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FIGURE 7.20 Input buffering versus output buffering.

the first packet holding back other subsequent packets behind it is called head-of-line
(HOL) blocking. One way to eliminate the HOL blocking is to provide N separate
input buffers at each input port so that each input buffer is dedicated to a particular
output. This ensures that a head-of-line packet cannot block other packets destined for
different outputs. Such an input buffer is called a virtual output buffer since the set of
-virtual output buffers belonging to the same output emulates the behavior of an output
buffer, and yet their physical location is at the input ports.

Recall from Chapter 4 that the complexity of a crossbar, which is N2, makes it
undesirable for building large switches. Multistage architectures have been considered
as a solution to building a large switch. One such architecture for packet switching
is called a banyan switch, as shown in Figure 7.21. The banyan switch is typically
composed of 2 x 2 switching elements interconnected in a certain fashion such that
exactly one path exists from each input to each output. Routing can be done in a dis-
tributed manner by appending the binary address of the output number to each packet,

Inputs Outpus FIGURE 7.21 An 8 x 8 banyan
0 — —1 — 0 switch.
1 1
2 2
3 3
4 4
5 5
6 6
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and by having each switching element at stage i steer a packet based on the ith bit of
the address. If the bit is 0, the switching element should steer the packet to its upper
output; otherwise, steer it to the lower output. In Figure 7.21, input 1 would like to send
a packet destined to output 5 (with address 101 in binary). The switching element at
stage 1 looks at the first bit of the address and steers the packet to its lower output. The
packet then arrives at the bottom switching element at stage 2, which steers the packet
to the upper output since the second bit is 0. Finally, the switching element at stage 3
steers the packet to the lower output and sends the packet to output 5. The reader is
encouraged to try this exercise with other inputs and outputs.

Notice that if there is another packet from input 5 that would like to go to output 7
at the same time, this packet will contend for the same output of the switching ele-
ment at stage 1. This behavior causes the banyan switch to block packets even though
some outputs are idle. One way to prevent packets form being blocked inside the
switch is to provide buffering at each switching element so that contending packets
may be temporarily stored at a local buffer. When the local buffer is full, the as-
sociated switching element can send a backpressure signal, notifying the upstream
switching element to stop sending packets. The backpressure signal may be propagated
all the way to the input port, which may eventually buffer the incoming packets or
drop them.

The banyan switch is only one out of many possible ways to build large switches.
A large literature describes how to design switch interconnection fabrics, for example,
see [Robertazzi 1994].

SWITCH, ROUTER, SWITCH-ROUTER

Why are there several different names referring to a packet switch? A packet switch
is often simply called a switch if connections are made before any transfer of in-
formation can take place. That is, a switch employs a connection-oriented mode
and forwards a packet to its output port based on the virtual-circuit identifier of the
packet. Although switches are historically implemented in hardware, it is inaccurate
to refer to a device as a switch just because of implementation.

A router is a packet switch that transfers IP packets between inputs and outputs,
and uses the IP address to determine the output port. Thus a router is an IP-based
packet switch that operates in a connectionless mode. It is equally inaccurate to
refer a device as a router if the device is implemented in software although routers
were historically software-based. Indeed, most current core routers implement the
forwarding path in hardware.

Recently, there is interest in combining features in connectionless and connection-
oriented transfers in a single device called a switch-router that is capable of for-
warding packets in dual modes. An MPLS device (discussed in Chapter 10) is one
prominent example. The term “switching router” is used to emphasize the point that
the device is a router that can also perform switching.
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7.4 ROUTING IN PACKET NETWORKS

Routing is a major component of the network layer and is concerned with the problem
of determining feasible paths (or routes) for packets to follow from each source to each
destination. Figure 7.22 shows a packet-switching network providing communication
services among multiple nodes.® As suggested by the figure, a packet could take one
of several possible paths from node 1 to node 6. For example, three possible paths are
1-3-6, 1-4-5-6, and 1-2-5-6. However, which path is the “best” one? Here the meaning
of the term best depends on the objective function that the network operator tries to
optimize. If the objective is to minimize the number of hops, then path 1-3-6 is the
best. If each link incurs a certain delay and the objective function is to minimize the
end-to-end delay, then the best path is the one that gives the minimum end-to-end delay.
Yet another objective function may involve selecting the path with the greatest available
bandwidth. Routing algorithms identify the set of paths that are best in a sense defined
by the network operator. Note that a routing algorithm must have global knowledge
about the state of the network to perform its task.

The main ingredients of & good routing algorithm depend on the objective function
that one is trying to optimize. However, in general a routing algorithm should seek one
or more of the following goals:

1. Rapid and accurate delivery of packets. A routing algorithm must operate correctly;
that is, it must be able to find a path to the correct destination if it exists. In addition,
the algorithm should not take an unreasonably long time to find the path to the
destination. ,

2. Adaptability to changes in network topology resulting from node or link failures.
In an operational network equipment and transmission lines are subject to failures.
A routing algorithm must be able to adapt and reconfigure the paths automatically
when equipment fails.

3. Adaptability to varying source-destination traffic loads. Traffic loads are quantities
that are changing dynamically. In a period of 24 hours, traffic loads may go through
cycles of heavy and light periods. An adaptive routing algorithm would be able to
adjust the paths based on the current traffic loads.

FIGURE 7.22 Multiple paths in a
packet-switching network.

Node (switch or router)

6Note that in this section a node refers to a packet switch, a router, or any network element performing
routing and forwarding functions.



516 CHAPTER7 Packet-Switching Networks

4. Ability to route packets away from temporarily congested links. A routing algorithm
should avoid heavily congested links. Often it is desirable to balance the load on
each link/path. A -

5. Ability to determine the connectivity of the network. To find optimal paths, the routing
system needs to know the connectivity or reachability information.

6. Ability to avoid routing loops. Inconsistent information in distributed computation
may lead to routing tables that create routing loops. The routing system should avoid
persistent routing loops even in the presence of distributed routing systems.

7. Low overhead. A routing system typically obtains the connectivity information by
exchanging control messages with other routing systems. These messages represent
an overhead on bandwidth usage that should be minimized.

7.4.1 Routing Algorithm Classification

One can classify routing algorithms in several ways. Based on their responsiveness,
routing can be static or dynamic (or adaptive). In static routing paths are precomputed
based on the network topology, link capacities. and other information. The computation
is typically performed offline by a dedicated host. When the computation is completed,
the paths are loaded to the routing table and remain fixed for a relatively long period
of time. Static routing may suffice if the network size is small, the traffic load does
not change appreciably, or the network topology is relatively fixed. Static routing may
become cumbersome as the network size increases. If the traffic load changes, the
pre-computed paths may easily become suboptimal. The biggest disadvantage of static
routing is its inability to react rapidly to network failures. In dynamic (adaptive)
routing each node continuously learns the state of the network by communicating with
its neighbors. Thus a change in a network topology is eventually propagated to all
nodes. Based on the information collected, each node can compute the best paths to
desired destinations. One disadvantage of dynamic routing is the added complexity in
the node.

Routing algorithms can be centralized or distributed. In centralized routing a
network control center computes all paths and then uploads this information to the nodes
in the network. In distributed routing nodes cooperate by means of message exchanges
and perform their own routing computations. Distributed routing algorithms generally
scale better than centralized algorithms but are more likely to produce inconsistent
results. If the paths calculated by difterent nodes are inconsistent, loops can develop.
That is, if A thinks that the best path to Z is through B and B thinks that the best path
to Z is through A, then packets destined for Z that have the misfortune of arriving at A
or B will be stuck in a loop between A and B.

Routing decisions can be made on a per packet basis or during the connection
setup time. With virtual-circuit packet switching, the path (virtual circuit) is deter-
mined during the connection setup phase. Once the virtual circuit is established, all
packets belonging to the virtual circuit follow the same path. Datagram packet switch-
ing does not require a connection setup. The path followed by each packet is determined
independently by the routing table in each node.
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7.4.2 Routing Tables

Once the routing algorithm has determined the set of paths, the path information is
stored in the routing table so that each node (switch or router) knows how to forward
packets. As discussed in Section 7.3, the specific routing information stored depends
on the type of packet switching. With virtual-circuit packet switching, the routing table
. translates each incoming VCI to an outgoing VCI and identifies the output port to which
to forward a packet based on the incoming VCI of the packet. With datagram packet
switching, the routing table identifies the next hop to which to forward a packet based
on the destination address of the packet. This section describes how various routing
tables in a network cooperate to carry out end-to-end forwarding of packets.

Consider a virtual-circuit packet-switching network as shown in Figure 7.23 where
virtual circuits are terminated at hosts. We assume that virtual circuits are bidirectional
and that each direction uses the same value. There are two virtual circuits between
node A (host) and node 1 (switch). A packet sent by node A with VCI 1 in the header
will eventually reach node B, while a packet with VCI 5 from node A will eventually
reach node D. For each node pair, the VCI has local significance only. At each link the
identifier may be translated to a different identifier, depending on the available VClIs at
a given link. In our example VCI 1 from node A gets translated to 2, and then to 7, and
finally to 8 before reaching node B. When node 1 receives a packet with VCI 1, that
node should replace the incoming VCI with 2 and then forward the packet to node 3.
Other nodes perform similarly.

Using a local VCI rather than a global one has two advantages. First, more virtual
circuits can be assigned, since the VCIs have to be unique only on a link basis rather
than on a global basis. If the virtual circuit field in the packet header is two bytes long,
then up to 64K virtual circuits can be accommodated on a single link. Second, searching
for an available VCI is simple, since a node has to guarantee uniqueness only on its
local link—the information that the switch has in its own routing table. If global VCIs
are used, the node has to ensure that the chosen VCl is not currently being used by any
link along the path, a very time-consuming chore.

The corresponding routing table at each packet switch is shown in Figure 7.24. If a
packet with VCI 5 arrives at node 1 from node A, the packet is forwarded to node 3 after
the VCI is replaced with 3. After arriving at node 3, the packet receives the outgoing
VCI 4 and is then forwarded to node 4. Node 4 translates the VCI to 5 and forwards

FIGURE 7.23 Virtual circuit identifier determines the destination.
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FIGURE 7.24 Routing tables for the packet-switching network in Figure 7.23.

the packet to node 5. Finally, node 5 translates the VCI to 2 and delivers the packet
to the destination, which is node D. To make the description easier, the routing tables
in Figure 7.24 use node numbers to identify where a packet comes from and where a
packet is to be forwarded. In practice, local port numbers are used instead of remote
node numbers.

With datagram packet switching, no virtual circuit has to be set up, since no connec-
tion exists between a source and a destination. Figure 7.25 shows the routing tables for
the network topology in Figure 7.22, assuming that a minimum-hop routing objective
is used. If a packet destined to node 6 arrives at node 1, the packet is first forwarded
to node 3 based on the corresponding entry in the routing table at node 1. Node 3
then forwards the packet to node 6. In general, the destination address may be long
(32 bits for [Pv4), and thus a hash table or more sophisticated lookup technique may
be employed to yield a match quickly.

Now suppose that a packet arrives at node 1 and is destined to node D, which is
attached to node 5. The routing table in node 1 directs the packet to node 2. The routing
table in node 2 directs the packet to node 5, which then delivers the packet to node D.

7.4.3 Hierarchical Routing

The size of the routing tables that routers need to keep can be reduced if a hierarchical
approach is used in the assignment of addresses. Essentially, hosts that are near each
other should have addresses that have common prefixes. In this way routers need to
examine only part of the address (i.e., the prefix) in order to decide how a packet should
be routed. Figure 7.26 gives an example of hierarchical address assignment and a flat
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FIGURE 7.25 Routing tables for datagram network in Figure 7.22.
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FIGURE 7.26 Address assignment: (a) hierarchical and (b) flat.
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address assignment. In part (a) the hosts at each of the four sites have the same prefix.
Thus the two routers need only maintain tables with four entries as shown. On the
other hand, if the addresses are not hierarchical (Figure 7.26b), then the routers need
to maintain 16 entries in their routing tables.

HIERARCHICAL ADDRESSES IN THE INTERNET

IP addresses consist of two parts: the first part is a unique identifier for the network
within the Internet; the second part identifies the host within the network. IP ad-
dresses are made hierarchical in two ways. Within a network the host part of the ad-
dress may be further subdivided into two parts: an identifier for a subnetrwork within
the network and a host identifier within the subnet. Outside the network, routers
route packets according to the network part of the destination address. Once a packet
arrives to the network, further routing is done based on the subnetwork address.

The Internet also uses another hierarchy type for addressing, called supernetting.
Here networks that connect to a common regional network are given addresses that
have a common prefix. This technique allows distant routers to route packets that
are destined to networks connected to the same region based on a single routing
table entry for the prefix. We explain the details of this procedure when we discuss
CIDR addressing in Chapter 8.

7.4.4 Specialized Routing

In this section we examine two simple approaches to routing, called flooding and
deflection routing, which are used in certain network scenarios.

FLOODING

The principle of flooding calls for a packet switch to forward an incoming packet to
all ports except the one the packet was received from. If each packet switch performs
this flooding process, the packet will eventually reach the destination as long as at
least one path exists between the source and the destination. Flooding is an effective
routing approach when the information in the routing tables is not available, such as
during system startup, or when survivability is required, such as in military networks.
Flooding is also effective when the source needs to send a packet to all nodes connected
to the network (i.e., broadcast delivery). We will see that the link-state routing algorithm
uses flooding to distribute the link-state information to other nodes in the network.
Flooding may easily swamp the network as one packet creates multiple packets that
in turn create multiples of multiple packets, generating an exponential growth rate as
illustrated in Figure 7.27. Initially one packet arriving at node 1 triggers three packets
to nodes 2, 3, and 4. In the second phase nodes 2, 3, and 4 send two, two, and three
packets, respectively. These packets arrive at nodes 2 through 6. In the third phase 15
more packets are generated, giving a total of 25 packets after three phases. Clearly,
flooding needs to be controlled so that packets are not generated excessively. To reduce
resource consumption in the network, one can implement a number of mechanisms.
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FIGURE 7.27 Flooding is initiated from node 1: (a) hop-1 transmissions, (b) hop-2
transmissions, and (c) hop-3 transmissions.

One simple method is to use a time-to-live (TTL) field in each packet. When the
source sends a packet, the TTL is initially set to some number. Each node decrements
the TTL by one before flooding the packet. If the value reaches zero, the node discards
the packet. To avoid unnecessary waste of bandwidth, the TTL should ideally be set
to the minimum hop number between two furthest nodes (called the diameter of the
network). In Figure 7.27 the diameter of the network is two. To have a packet reach
any destination, it is sufficient to set the TTL to two.

In the second method, each node adds its identifier to the header of the packet
before it floods the packet. When a node receives a packet that contains the identifier of
the node, it discards the packet since it knows that the packet already visited the node
before. This method effectively prevents a packet from going around a loop.

The third method is similar to the second method in that they both try to discard
old packets. The only difference lies in the implementation. Here each packet from
a given source is identified with a unique sequence number. When a node receives a
packet, the node records the source address and the sequence number of the packet.
If the node discovers that the packet has already visited the node, based on the stored
source address and sequence number, it will discard the packet.

DEFLECTION ROUTING

Deflection routing was first proposed by Paul Baran in 1964 under the name of hot-
potato routing. To work effectively, this approach requires the network to provide
multiple paths for each source-destination pair. Each node first tries to forward a packet
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FIGURE 7.28 Manhattan street network. FIGURE 7.29 Deflection routing in
Manhattan street network.

to the preferred port. If the preferred port is busy or congested, the packet is deflected to
another port. Deflection routing often works well in a regular topology. One exampleof a
regular topology is shown in Figure 7.28, which is called the Manhattan street network,
since it resembles the streets of New York City. Each column represents an avenue,
and each row represents a street. Each node is labeled (i, j) where i denotes the row
number and j denotes the column number. The links have directions that alternate
for each column or row. If node (0,2) would like to send a packet to node (1,0), the
packet could go two left and one down. However, if the left port of node (0,1) is busy
(see Figure 7.29), the packet will be deflected to node (3,1). Then it can go through
nodes (2,1), (1.1), (1,2), (1,3) and eventually reach the destination node (1,0).

One advantage of deflection routing is that the node can be bufferless, since packets
do not have to wait for a specific port to become available. If the preferred port is
unavailable, the packet can be deflected to another port, which will eventually find
its own way to the destination. Since packets can take alternative paths, deflection
routing cannot guarantee in-sequence delivery of packets. Deflection routing can be
useful in optical networks where optical buffers are currently expensive and difficult
to build. Deflection routing can also be used to implement high-speed packet switches
where the topology is usually regular and high-speed buffers are relatively expensive
compared to deflection routing logic.

7.5 SHORTEST-PATH ROUTING

Many routing algorithms are based on variants of shortest-path algorithms, which try
to determine the shortest path according to some cost criterion. To better understand the
purpose of these algorithms, consider a communication network as a graph consisting
of a set of nodes (or vertices) and a set of links (or edges), where each node represents a
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FIGURE 7.30 A network with associated
link costs.

packet switch and each link represents a transmission line between two packet switches.
Figure 7.30 shows such an example. Associated with each link is a value that represents
the cost (or metric) of using that link. For simplicity, it is assumed that each link is
nondirected. If a link is directed, then the cost must be assigned to each direction. If
we define the path cost to be the sum of the link costs along the path, then the shortest .
path between a pair of nodes is the path with the least cost. For example, the shortest
path from node 2 to node 6 is 2-4-3-6, and the path cost is 4.

Many metrics can be used to assign a cost to each link, depending on the objective
function that is to be optimized. Examples include

1. Cost ~ l/capacity. The cost is inversely proportional to the link capacity. Here one
assigns higher costs to lower-capacity links. The objective is to send a packet through
a path with the highest capacity. If each link has equal capacity, then the shortest
path is the path with the minimum number of hops.

2. Cost ~ packet delay. The cost is proportional to an average packet delay, which
includes queueing delay in the switch buffer and propagation delay in the link. The
shortest path represents the fastest path to reach the destination.

3. Cost ~ congestion. The cost is proportional to some congestion measure, for exam-
ple, traffic loading. Thus the shortest path tries to avoid congested links.

7.5.1 The Bellman-Ford Algorithm

The Bellman-Ford algorithm (also called the Ford-Fulkerson algorithm) is based on
a principle that is intuitively easy to understand: If each neighbor of node A knows the
shortest path to node Z, then node A can determine its shortest path to node Z by calculat-
ing the cost/distance to node Z through each of its neighbors and picking the minimum.
As an example, suppose that we want to find the shortest path from node 2 to
node 6 (the destination) in Figure 7.30. To reach the destination, a packet from node 2
must first go through node 1, node 4, or node 5. Suppose that someone tells us that
the shortest paths from nodes 1, 4, and 5 to the destination (node 6) are 3,3, and 2,
respectively. If the packet first goes through node 1, the total distance (also called total
cost) is 3 + 3, which is equal to 6. Through node 4, the total distance is 1 + 3, equal
to 4. Through node 5, the total distance is 4 + 2, equal to 6. Thus the shortest path from
node 2 to the destination node is achieved if the packet first goes through node 4.
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To formalize this idea, let us first fix the destination node. Define D ; tobe the current
estimate of the minimum cost (or minimum distance) from node j to the destination
node and C;; to be the link cost from node i to node J. For example, Cj3 = C3; = 2,
and C4s = 3 in Figure 7.30. The link cost from node i to itself is defined to be zero
(that is, C;; = 0), and the link cost between node i and node k is infinite if node { and
node k are not directly connected. For example, C;s = Cp3 = 00 in Figure 7.30. If, in
Figure 7.30, the destination node is node 6, then the minimum cost from node 2 to the
destination node 6 can be calculated in terms of distances through node 1, node 4, or
node 5:

D, = min{C3; 4+ Dy, Co4 + Dy, Cys + Ds)
=min{3+3,1+3,4+ 2} 7.5
=4

Thus the minimum cost from node 2 to node 6 is through node 4 and is equal to 4.

One problem ir: our calculation of the minimum cost from node 2 to node 6 is that
we have assumed that the minimum costs from nodes 1, 4, and 5 to the destination were
known. In general, these nodes would not know their minimum costs to the destination
without performing similar calculations. So let us apply the same principle to obtain the
minimum costs for the other nodes. For example, the cost from node 1 to the destination
node 6 is found from

]

Dy = min{C\2 + D,, C13 + D3, C14 + Dy} (7.6)
and similarly the cost from node 4 is found from
D4 = min{Cy4; + Dy, Cs2 + D;, Ca3 + D3, Cy4s + Ds) 7.7

A discerning reader will note immediately that these equations are circular, since
D, depends on D; and D, depends on D,. The magic is that if we keep iterating and
updating these equations, the algorithm will eventually converge to the correct result. To
see this outcome, assume thatinitially D, = D, = ... = Ds = oc. Observe that at each
iteration we may discover new shorter paths to the destination, and so the distances
from each node to the destination node 6, that is, Dy, Dy, ..., Ds are nonincreas-
ing. Because the minimum distances are bounded below, eventually Dy, D,, ..., Ds
must converge to the distances corresponding to the shortest path to the given
destination.

Now if we define d as the destination node, we can summarize the Bellman-Ford
algorithm as follows:

1. Initialization (destination node d is distance 0 from itself )

D; =00, foralli#d (1.8)
D;=0 7.9
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2. Updating (find minimum distance to destination through neighbors): Foreachi # d,
D; = min{C;; + D;}, forallj#i (7.10)
J .

Repeat step 2 until no more changes occur in the iteration.

(D EW IUPO Minimum Cost

Using Figure 7.30, apply the Beliman-Ford algorithm to find both the minimum cost
ftom each node to the destination (node 6) and the next node along the shortest path.
- Each node i maintains an entry (n, D;), where n is the next node along the current
shortest path and D; is the current minimum cost from node i to the destination. The
next node is glven by the value of j in Equation 7.10, which gives the minimum cost.
If the next node is not defined, we set n to —1. In the first iteration, the destination
‘node informs its directly-attached neighbors that it is distance zero from itself. This
prompts the neighbors to calculate their distance to the destination node. In iteration 2,
the directly-attached neighbors inform their neighbors of their current shortest distance
“to the destination, so all nodes within two hops of the destination have found a path to
the destination. At iteration m, all nodes within m hops of the destination node have
determined a path to the destination. The algorithm terminates when no more changes
in entries are observed. Table 7.2 shows the execution of the Bellman-Ford algorithm
for destination node 6.

« Initially all nodes, other than the destination node 6, are at infinite cost (distance) to

. "node 6. Node 6 informs its nenghbors it is distance O from itself,

o (Iteration 1) Node 3 finds that it is connected to node 6 with cost of 1. Node 5 finds
it is connected to node 6 at a cost of 2. Nodes 3 and 5 update their entries and inform

~ their neighbors.

'« (Iteration 2) Node 1 finds it can reach node 6, via node 3 with cost 3. Node 2 finds it
can reach node 6, via node 5 with cost 6. Node 4 finds it has paths via nodes 3and 5,
with costs 3 and 7 respectively. Node 4 selects the path via node 3. Nodes 1, 2, and 4
update their entries and inform their neighbors.

» (Iteration 3) Node 2 finds that it can reach node 6 via node 4 with distance 4. Node 2
changes its entry to (4, 4) and informs its neighbors.

. (Iteratlon 4) Nodes 1, 4, and 5 process the new entry from node 2 but do not find any
~ new shortest paths. The algorithm has converged.

TABLE 7.2 Sample processing of Bellman-Ford algorithm. Each entry for
node i represents the next node and cost of the current shortest path to
destination 6.

Iteration Node 1 Node 2 Node 3 Node 4 Node 5
Initial (-1,00) (-1, 00) (-1, 00) (—1,00) (-1, 00)
1 (-1,00) - (—1,00) 6,1 (-1, 00) 6,2)
2 3G.3 5, 6) ®,1) 3,3 6,2)
3 3.3 4,4) 6. 1) 3.3 6,2)
4 3,3 4,4 6,1 3.3) 6,2)
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IDGNIIZWVR Shortest-Path Tree ’

From the preceding example, drav: the shortest path from each node to the destination
node. From the last row of Table 7.2, we see the next node of node 1 is node 3, the next
node of node 2 is node 4, the next node of node 3 is node 6, and so forth. Figure 7.31
shows the shortest-path tree rooted to node 6.

» FIGURE 7.31 Shortest-path tree to node 6.

One nice feature of the Bellman-Ford algorithm is that it lends itself readily to
a distributed implementation. The process involves having each node independently
compute its minimum cost to each destination and periodically broadcast the vector
of minimum costs to its neighbors. Changes in the routing table should also trigger a
node to broadcast the minimum costs to its neighbors to speed up convergence. This
mechanism is called triggered updates. It turns out that the distributed algorithm would
also converge to the correct minimum costs under mild assumptions. Upon convergence,
each node would know the minimum cost to each destination and the corresponding
next node along the shortest path. Because only cost vectors (or distance vectors) are
exchanged among neighbors, the protocol implementing the distributed Bellman-Ford
algorithm is often referred to as a distance vector protocol. Each node i participating
in the distance vector protocol computes the following equation:

Dii =0 (7.11)
D;; = min{Cix + Dy}, forallk #i (7.12)

where D;; is the minimum cost from node i to the destination node j. Upon updating,
node i broadcasts the vector { D;;, D;2, D3, .. .} toits neighbors. The distributed version
can adapt to changes in link costs or topology as the next example shows.

MY I Recomputing Minimum Cost

Suppose that after the distributed algorithm stabilizes for the network shown in Fig-
ure 7.30, the link connecting node 3 and node 6 breaks. Compute the minimum cost
from each node to the destination node (node 6), assuming that each node immediately
recomputes its cost after detecting changes and broadcasts its routing updates to its
neighbors. The new network topology is shown in Figure 7.32.
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FIGURE 7.32 - New network topology
following break from node 3 to 6.

N

Upon receiving routing updates, we assume that nodes recompute their shortest
paths in parallel simultaneously. When the computations are completed, we also assume
that routing updates are transmitted simultaneously. The results of the computations are
shown in Table 7.3. The results are obtained as follows (again the reader is encouraged
to perform the algorithm before reading the discussion).

« (Update 1) As soon as node 3 detects that link (3,6) breaks, node 3 recomputes the
minimum cost to node 6. Node 3 looks for paths to node 6 through its neighbors,
node 1 and node 4, and its calculations indicate that the new shortest path is through
node 4 at a cost of 5. (At this point, node 3 does not realize that the shortest path
that node 4 is advertising happens to go through node 3, so a loop has been created!)
Node 3 theh sends the new routing update to its neighbors, which are nodes 1 and 4.

» (Update 2) Nodes 1 and 4 then recompute their minimum costs: node 1 finds its
shortest path is still through node 3 but the cost has increased to 7; node 4 finds its
shortest path is through either node 2 or node 5 with a cost of 5. We suppose that
node 4 chooses node 2 (which creates a new loop between 4 and 2). Node 1 transmits
its routing update to nodes 2, 3, and 4, and node 4 transmits its routing update to
nodes 1, 2, 3, and 5.

* (Update 3) Node 1 finds its shortest.path is still through node 3. Node 2 finds its
shortest path is still through node 4 but the cost has increased to 6. Node 3 finds that
its shortest path is still through node 4 but the cost has increased to 7. Nodes 4 and 5

 find their shortest paths have not changed. Node 2 transmits its update to nodes 1,4,

"and 5, and node 3 transmits its update to nodes 1 and 4.

TABLE 7.3 Next node and cost of current shortest path to node 6 using

the distributed version.

Update Node 1 Node 2 Node3  Noded Node 5

Before break 3,3) @49 61 3,3 62
1 (3.3 4,49 @9 e 6,2
2 3.7 @,4) @5 @59 6,2)
3 G.7D @, 6y @7 @9 6,2
4 2,9 @.6) @n 69 (6,2)
5 @9 (4,6) @ 5.9 (6,2)
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. (Update 4) Node 1 finds its shortest. path is through exther node 2 or node 3 wuh a
cost of 9. Suppose that node 1 chooses node 2. Node 4 now finds a new shortest path
through node 5 with a cost of 5 (which removes the loop), since the cost through 2
has increased to 7. Node 5 does not change its shortest path. Node 1 transmits its
update to nodes 2, 3, and 4, and node 4 transmits its update to nodes 1, 2,3, and 5.

* (Update 5) None of the nodes finds a new shorter path. The algorithm has converged.

This example shows that the distributed version of the Bellman-Ford algorithm
requires a series of exchanges of update information to correct inaccurate information -
until convergence is achieved. Because of this, the algorithm usually converges ratherf;»
slowly. Note also that during the calculation in the transient state, packets already in -
transit may loop among nodes. After convergence in the steady state, packets eventually i
find the destination. ; ; o e

DGV SNV Reaction to Link Failure

This example shows that the distributed Bellman-Ford algorithm may react very slowly
to a link failure. To see this, consider the topology shown in Figure 7.33a with node 4 as
the destination. Suppose that after the algorithm stabilizes, link (3,4) breaks, as shown
in Figure 7.33b. Recompute the minimum cost from each node to the destmatnon node
(node 4).

FIGURE 7.33 Topology before and after hnk
failure.

TABLE 7.4 Next node and cost of current

shortest path to node 4.

Update Node 1 Node 2 Node 3

Before break - (2,3) (B.2) 4,1

After break 2,3 3,2 2,3)
1 2,3 3.9 23
2 2,5) 3.4 2,5
3 2,5 (3,6) 2. 5)
4 @7 - 3,6) @27
5

@7 (3, 8) (2, 7)

Note: Dotsmthelastrowmdxcaletbmtheubleconnnuesto
infinity
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" The computation of minimum costs is shown in Table 7.4. As the table shows, each
node keeps updating its cost (in increments of 2 units). Ateach update, node 2 thinks that
the shortest path to the destination is through node 3. Likewise, node 3 thinks the best
path is through node 2. As a result, a packet in either of these two nodes bounces back
and forth until the algorithm stops updating. Unfortunately, in this case the algorithm
keeps iterating until the minimum cost is infinite (or very large, in practice), at which
point, the algorithm realizes that the destination node is unreachable. This problem
is often called counting to infinity. It is easy to see that if link (3,4) is restored, the
algorithm will converge very quickly. Therefore: Good news travels quickly, bad news
travels slowly. '

To avoid the counting-to-infinity problem, several changes to the algorithm have
been proposed, but unfortunately, none of them work satisfactorily in all situations.
One particular method that is widely implemented is called the split horizon, whereby
the minimum cost to a given destination is not sent to.a neighbor if the neighbor is the
next node along the shortest path. For example, if node X thinks that the best route to
node Y is via node Z, then node X should not send the corresponding minimum cost to
node Z. Another variation called split horizon with poisoned reverse allows a node
to send the minimum costs to all its neighbors; however, the minimum cost to a given
destination is set to infinity if the neighbor is the next node along the shortest path.
Here, if node X thinks that the best route to node Y is via node Z, then node X should
set the corresponding minimum cost to infinity before sending it to node Z.

(DN Split Horizon with Poisoned Reverse

Consider again the topology shown in Figure 7.33a. Suppose that after the algorithm
stabilizes, link (3,4) breaks. Recompute the minimum cost from each node to the
destination node (node 4), using the split horizon with poisoned reverse. ‘
The computation of minimum costs is shown in Table 7.5. After the link breaks,
node 3 sets the cost to the destination equal to infinity, since the minimum cost node 3
has received from node 2 is also infinity. When node 2 receives the update message, it
also sets the cost to infinity. Next node 1 also learns that the destination is unreachable.
Thus split horizon with poisoned reverse speeds up convergence in this case.

TAELE 7.5 Minimum costs by using split horizon

with poisoned reverse.

Update Node 1 Node 2 Node 3

Bcfore break @2.3) 3.2 @

After break 2,3) 3,2) (-1, 00)
1 2,3 (-1, 00) (—-1,00)

2 (-1, 00) (-1, 00) (—1,00)
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7.5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is an alternative algorithm for finding the shortest paths from
a source node to all other nodes in a network. It is generally more efficient than the
Bellman-Ford algorithm but requires each link cost to be positive, which is fortunately
the case in communication networks. The main idea of Dijkstra’s algorithm is to pro-
gressively identify the closest nodes from the source node in order of increasing path
cost. The algorithm is iterative. At the first iteration the algorithm finds the closest
node from the source node, which must be the neighbor of the source node if link
costs are positive. At the second iteration the algorithm finds the second-closest node
from the source node. This node must be the neighbor of either the source node or the
closest node to the source node; otherwise, there is a closer node. At the third iteration
the third-closest node must be the neighbor of the source node or the first two closest
nodes, and so on. Thus at the kth iteration, the algonthm will have determined the k
closest nodes from the source node.
The algorithm can be implemented by maintaining a set N of permanently labeled
+nodes, which consists of those nodes whose shortest paths have been determined.
At each iteration the next-closest node is added to the set N and the distance to the
remaining nodes via the new node is evaluated. To formalize the algorithm, let us define
D; to be the current minimum cost from the source node (labeled s) to node ;. Dijkstra’s
algorithm can be described as follows:

1. Initialization:;

N = {s} (7.13)
D; =C,j, forallj#s (7.14)
D, =0 (1.15)

- 2. Finding the next closest node: Find node i ¢ N such that

D; = min D, (1.16)

Addito N.
If N contains all the nodes, stop.
3. Updating minimum costs after node i added to N: For each node j ¢ N

D; = min{D;, D; + C;;} (7.17)

Go to step 2.
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[ EN5I4WM Finding the Shortest Path

Using Figure 7.30, apply Dijkstra’s algorithm to find the shortest paths from the source
node (assumed to be node 1) to all the other nodes.

Table 7.6 shows the execution of Dijkstra’s algorithm at the end of the initialization
and each iteration. At each iteration the value of the minimum cost of the next closest.
node is underlined. In case of a tie, the closest node can be chosen randomly. The -
minimum cost for each node not permanently labeled is then updated sequentially. The
last row records the minimum cost to each node.

TABLE 7.6 Execution of Dijkstra’s algorithm.

Iteration N D, D Dy Ds D¢ -
Initial {1} 3 2 ] o0 o0

1 {1,3} 3 2 4 o] 3

2 {1,2,3} 3 2 4 7 3

3 {1,2,3,6} 3 2 4 5 « 3

4 {1,23.4,6} 3 2 4 5 3

5 {1,2,34.5,6} 3 2 4 S 3

If we also keep track of the predecessor node of the next-closest node at each itera-
tion, we can obtain a shortest-path tree rooted at node 1, such as shown in Figure 7.34.
When the algorithm stops, it knows the minimum cost to each node and the next node
along the shortest path. For a datagram network, the routing table at node 1 looks like
Table 7.7.

FIGURE 7.34 Shortest-path tree from node 1
to other nodes.

The data in the table is obtained as follows (again we encéurage the reader to
develop the results in Table 7.6 and Table 7.7, before reading on):

« (Iteration 1) Node 1 compares its costs to its directly attached nodes and finds that
node 3 is the closest with a cost of 2. Node 3 is added to the set N. The tree diagram
leading to Figure 7.34 is started by linking node 1 to node 3. The new minimum costs
from node 1 to other nodes via node 3 are determined. It is found that a new shortest
path to node 4 is through node 3 with cost of 4 so the third entry in iteration 1 is
changed. It is also determined that node 6 can be reached through node 3 at a cost of 3.

o (Iteration 2) Node 2 and node 6 are tied for the second closest from node 1. Suppose
that node 2 is selected so it is added to the set N. The tree diagram is updated by
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connecting node 1 to node 2. The new minimum costs from node 1 are now calculated
for the paths through node 2. It is found that node 5 has a cost of 7 through node 2.
* (Iteration 3) Node 6 is next added to N and connected in the tree diagram to node 1
via node 3. A new shortest path to node 5 through node 6 is found with a cost of 5.
* (Iteration 4) Node 4 is found to be the fourth closest node from node 1. It is connected
to node 1 via node 3. No new shortest path is found through node 4.
* (Iteration 5) Node 5 if finally added to N with a cost of 5. Node 5 is connected to
node 1 via nodes 3 and 6. This completes the algorithm.

TABLE 7.7 Routing table at node 1
for Figure 7.34. :

Destination Next node Cost

A B W
W W W W
Wb oW

To calculate the shortest paths, Dijkstra’s algorithm requires the costs of all links
to be available to the algorithm. Thus these link values must be communicated to
the processor that is carrying out the computation. The link-state protocol uses this
approach to calculate shortest paths.

7.5.3 Source Routing versus Hop-by-Hop Routing

In the datagram network, typically each node is responsible for determining the next hop
along the shortest path. If each node along the path performs the same process, a packet
traveling from the source is said to follow hop-by-hop routing to the destination.

Source routing is another routing approach whereby the path to the destination
is determined by the source. Another variation, termed explicit routing, allows a par-
ticular node (not necessarily the source) to determine the path. Source routing works
in either datagram or virtual-circuit packet switching. Before the source can send a
packet, the source has to know the path to the destination in order to include the path
information in the packet header. The path information contains the sequence of nodes
to traverse and should give the intermediate node sufficient information to forward the
packet to the next node until the packet reaches the destination. Figure 7.35 shows how
source routing works in a datagram network.

Each node examines the header, strips off the address identifying the node, and
forwards the packet to the next node. The source (host A) initially includes the entire
path (1, 3, 6, B) in the packet to be destined to host B. Node 1 strips off its address and
forwards the packet to the next node, which is node 3. The path specified in the header
now contains 3, 6, B. Nodes 3 and 6 perform the same function until the packet reaches
host B, which finally verifies that it is the intended destination.
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-

Destination
host

FIGURE 7.35 Example of source routing.

In some cases it may be useful to preserve the complete path information while
the packet is progressing toward the destination. With complete path information the
destination can send a packet back to the source by simply reversing the path, which
avoids relearning the reverse path. Path preservation can easily be implemented by
introducing another field in the header that keeps track of the next node to be visited
along the path so that a node knows which specific address to read.

Source routing typically can be strict or loose. In strict source routing the source
specifies the address of each node along the path to the destination. For cases when
the source only knows partial information of the network topology, the source can
use loose source routing where only a subset of the nodes along the path needs to be
specified. For example, host A may specify path (1, 6, B) for loose source routing in
Figure 7.35. When node 1 receives the packet containing such a path, it is up to node 1
to determine the path to node 6. For example, node 1 may decide that the better path to
node 6 is through node 4 and node 3.

7.5.4 Link-State Routing versus Distance-Vector Routing

Within a domain the best paths are invariably found by using a shortest-path algorithm
that identifies the set of shortest paths according to some metric. The metric reflects
the objective function of the network operator, for example, hops, cost, delay, and
available bandwidth. To perform the shortest-path calculations, the values of the metrics
for different links in the networks are required. Nodes must cooperate and exchange
information to obtain the values of the metrics. They then use one of the two types of
shortest-path algorithms to compute the set of current best routes.

Many routers in the Internet support both the distance-vector protocol and the link-
state protocol. In the distance-vector routing approach, neighboring routers exchange
routing tables that state the set or vector of known distances to other destinations. After
neighboring routers exchange this information, they process it using a Bellman-Ford
algorithm to see whether they can find new better paths through the neighbor that
provided the information. If a new better path is found, the router will send the new
vector to its neighbors. Distance-vector routing adapts to changes in network topology
gradually as the information on the changes percolates through the network.
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In the link-state routing approach each router floods information about the state of
the links that connect it to its neighbors. This process allows each router to construct
a map of the entire network and from this map to derive the routing table using the
Dijkstra algorithm. If the state of the link changes, the router detecting the change will
flood the new information throughout the network. Thus link-state routing typically
converges faster than distance-vector routing.

Besides convergence time, comparison between distance vector and link-state rout-
ing has been made in the past with respect to memory and processing requirements.
However, these criteria have become less important due to rapid advances in silicon
technologies that have made these components significantly cheaper and more powerful.

Since link-state routing knows the entire map of the network, link-state routing is
generally more flexible than distance-vector routing. For example, link-state routing
deals with source routing better than distance-vector routing. Some networks may im-
pose certain constraints for a given source-destination pair, such as avoiding a particular
link that is deemed unreliable. In such cases, link-state routing also works better than
distance-vector routing,.

7.6 ATM NETWORKS

Asynchronous transfer mode (ATM) is a method for multiplexing and switching that
supports a broad range of services. ATM is a connection-oriented packet-switching
technique that can provide quality-of-service (QoS) guarantees on a per-connection
basis.

ATM combines several desirable features of packet switching and time-division
multiplexing (TDM) circuit switching. Table 7.8 compares four features of TDM and
packet multiplexing. The first comparison involves the capability to support services
that generate information at a variable bit rate. Packet multiplexing easily handles vari-
able bit rates. Because the information generated by the service is simply inserted into
packets, the variable-bit-rate nature of the service translates into the generation of the
corresponding packets. Variable-bit-rate services i.e., video, can therefore be accom-
modated as long as packets are not generated at a rate that exceeds the speed of the
transmission line. TDM systems, on the other hand, have significant difficulty support-
ing variable-bit-rate services. Because TDM systems inherently transfer information at
a constant bit rate, the bit rates that TDM can support are multiples of some basic rate,
for example, 64 kbps for telephone networks and STS-1 for SONET.

The second comparison involves the delay incurred in traversing the network. In
the case of TDM, once a connection is set up the delays are small and nearly constant.

TABLE 7.8 TDM versus packet multiplexing.

Variable bit rate Delay Bursty traffic Processing
TDM Multirate only Low, fixed Inefficient Minimal, very high speed
Packet Easily handled Variable Efficient Header and packet

processing required
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Packet multiplexing, on the other hand, has inherently variable transfer delays because
of the queueing that takes place in the multiplexers. Packet multiplexing may also have
difficulty in providing particular services with low delay. For example, because packets
can be of variable length, when a long packet is undergoing transmission, all other
packets including urgent ones must wait for the duration of the transmission. ATM
avoids this situation by making the packet length short.

The third criterion for comparison is the capability to support bursty traffic. TDM
dedicates the transmission resources. namely, slots, to a connection for the entire
duration of the connection. If the connection is generating information in a bursty
fashion, then many of the dedicated slots go unused. Therefore, TDM is inefficient for
services that generate bursty information. Packet multiplexing, on the other hand, was
developed specifically to handle bursty traffic and can do so in an efficient way.

Processing is the fourth comparison criterion. In TDM, the processing in trans-
ferring slots from inputs to outputs is relatively small and can be done at very high
speeds. Packet multiplexing, on the other hand. has to examine the information in each
packet header and requires more intensive processing. Packet processing was tradition-
ally done in software, which was relatively slow at the time ATM was first formulated.
However. recent advances in hardware techniques have opened up opportunities for
utilizing hardware to perform intensive packet processing at high speed.

ATM was developed in the mid-1980s to combine the advantages of TDM and
packet multiplexing. ATM involves the conversion of all information flows into short
53-byte tixed-length packets called cells. Cells contain abbreviated 5-byte headers, or
labels. which are essentially pointers to tables in the switches. In terms of the four
criteria. ATM has the following features. Because it is packet based, ATM can easily
handle services that generate information in bursty fashion or at variable bit rates. The
abbreviated header of ATM and the fixed length facilitate hardware implementations
that result in low delay and high speeds.

Figure 7.36 shows the operation of an ATM multiplexer. The information flows
generated by various users are converted into cells and sent to an ATM multiplexer.
The multiplexer arranges the cells into one or more queucs and implements some

Voice —D——D' 1
Data

2
packets ! ! 3 MUX -
Wasted bandwidth
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FIGURE 7.36 ATM multiplexing.
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scheduling strategy that determines the order in which cells are transmitted. The purpose
of the scheduling strategy is to provide for the different qualities of service required by
the different flows. ATM does not reserve transmission slots for specific information
flows, and so it has the efficiencies of packet multiplexing. The reason for the term
asynchronous is that the transmission of cells is not synchronized to any frame structure
as in the case of TDM systems.

ATM networks are connection-oriented and require a connection setup prior to the
transfer of cells. The connection setup is similar to that described for virtual-circuit
packet-switching networks. ATM connection setup procedure requires the source to
provide a traffic descriptor that describes the manner in which cells are produced, for
example, peak cell rate in cells/second, sustainable (long-term average) cell rate in
cells/second, and maximum length of a burst of cells. The source also specifies a set of
QoS parameters that the connection must satisfy, for example, cell delay, cell loss, and
cell delay jitter. The connection setup procedure involves identifying a path through the
network that can meet these requirements. A connection admission control procedure
is carried out at every multiplexer along the path. This path is called a virtual channel
connection (VCC).

The VCC is established by a chain of local identifiers that are defined during the
connection setup at the input port to each switch between the source and the destination.
Figure 7.37 shows the tables associated with two of the input ports to an ATM switch. In
input port 5 we have cells from a voice stream arriving with identifier 32 in the header.
We also have cells from a video stream arriving with identifier 25. When a cell with
identifier 32 arrives at input port 5, the table lookup for entry 32 indicates that the cell
is to be switched to output port 1 and that the identifier in the header is to be changed
to 67. Similarly, cells arriving at port 5 with identifier 25 are switched to output port N
with new identifier 75. Note that the identifier is locally defined for each input port.
Thus input port 6 uses identifier 32 for a different VCC.

At this point it is clear that ATM has a strong resemblance to virtual-circuit packet
switching. One major difference is ATM’s use of short, fixed-length packets. This
approach simplifies the implementation of switches and makes high speed operation
possible. Indeed, ATM switches with capacities of up to 640 Gigabits/second have been
deployed in the field. The use of short fixed-length packets also gives a finer degree
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FIGURE 7.37 ATM switching.
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FIGURE 7.38 Role of virtual paths in ATM network.

of control over the scheduling of packet transmissions, since the shorter packets imply
a smaller minimum waiting time until the transmission line becomes available for the
next transmission.

To understand how the local identifiers are defined in ATM, we first need to see
how ATM incorporates some of the concepts used in SONET. SONET allows flows
that have a common path through the network to be grouped together. ATM uses the
concept of a virtual path to achieve this bundling. Figure 7.38 shows five VCCs in an
ATM network. The VCCs a, b, and ¢ enter the network at switch 1, share a common
path up to switch 2, and are bundled into an aggregated path called a virtual path
connection (VPC) that connects switch 1 to switch 2.7 This VPC happens to pass
through an ATM cross-connect whose role is to switch only virtual paths. The VPC
that contains VCCs a, b, and ¢ has been given virtual path identifier (VPI) 3 between
switch 1 and the cross-connect. The cross-connect switches all cells with VPI 3 to the
link connecting it to switch number 2 and changes the VPI to 5, which identifies the
virtual path between the cross-connect and ATM switch 2. This VPC terminates at
switch 2 where the three VCCs are unbundled; cells from VCC a are switched out to a
given output port, whereas cells from VCCs b and ¢ proceed to switch 3. Figure 7.38
also shows VCCs d and e entering at switch 1 with a common path to switch 4. These
two channels are bundled together in a virtual path that is identified by VPI 2 between
switch 1 and the cross-connect and by VPI 1 between the cross-connect and switch 4.

The preceding discussion clearly shows that a virtual circuit in ATM requires two
levels of identifiers: an identifier for the VPC, the VPI; and a local identifier for the
VCC, the so-called virtual channel identifier (VCI). A VPC can be thought of asa
large digital pipe that takes traffic streams from other smaller pipes (VCCs) and handles
them as a single unit. Figure 7.39 shows a cross-section of the cell stream that arrives

TWe use letters to identify the end-to-end virtual connection. In ATM the network identifies each virtual
connection by a chain of locally defined identifiers. We use numbers to indicate these identifiers.
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Virtual channels

FIGURE 7.39 ATM virtual connections.

at a given input port of an ATM switch or a cross-connect. The cells of a specific VCC
are identified by a two-part identifier consisting of a VPI and a VCI. VCCs that have
been bundled into a virtual path have the same VPI, and their cells are switched in the
same manner over the entire length of the virtual path. At all switches along the virtual
path, switching is based on the VPI only and the VClIs are unchanged. The VCls are
used and translated only at the end of the virtual path.

The details of the VPIs and VClIs are discussed in Chapter 9. However, it is worth
noting here that the VCI/VPI structure can support a very large number of connections
and hence provides scalability to very large networks.

ATM provides many of the features of SONET systems that facilitate the config-
uration of the network topology and the management of the bandwidth. The virtual
path concept combined with the use of ATM cross-connects allow the network opera-
tor to dynamically reconfigure the topology seen by the ATM switches using software
control. This concept also allows the operator to change the bandwidth allocated to
virtual paths. Furthermore, these bandwidth allocations can be done to any degree of
granularity, that is, unlike SONET, ATM is not restricted to multiples of 64 kbps.

FROM ATM TO MPLS

ATM was initially envisioned as the high-speed multiservice network technology
that could be deployed in the core packet network. In the 1990s, ATM switches
were widely used to interconnect IP routers in the ISP network. The connection-
oriented feature of ATM allows service providers to easily configure the routes

 followed by the virtual circuits and paths so that network congestion is minimized.
However, the overhead in the ATM cell header was found to be a significant penalty
in link efficiency. The need to implement segmentation and reassembly for ATM
at speeds beyond OC-48 also proved challenging and unnecessary given the much
lower packet transmission times inherent at such high transmission speeds.
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Multi-Protocol Label Switching (MPLS) was introduced as an alternative net-
work technology for the core ISP network. As in ATM, MPLS adopts the label
switching paradigm, but with variable-length packets using Packet-over-SONET
(POS) encapsulation (MPLS is described in detail in Chapter 10). This difference
avoids the inefficiency of ATM overhead and the need to do segmentation and
reassembly. In addition, MPLS integrates its routing and addressing functions with
IP (unlike ATM which requires separate signaling and routing functions) and so is
better suited for networks that primarily carry IP. At present, ATM is mainly used
in the edge of the network where QoS is essential and speed is not of essence.

~
/ .

7.7 TRAFFIC MANAGEMENT
AT THE PACKET LEVEL

Traffic management is concerned with delivery of QoS to the end user and with
efficient use of network resources. Based on traffic granularity, we can classify traffic
management into three levels: packet level, flow level, and flow-aggregated level. In
this section, we focus on the packet level, which is mainly concerned with packet
queueing and packet scheduling at switches, routers, and multiplexers to provide
differentiated treatment for packets belonging to different QoS classes. Packet-level
traffic management operates in the smallest time scale on the order of packet transmis-
sion time.

Recall from Section 7.3.3 that a packet switch can be viewed as a node where packet
streams arrive, are demultiplexed, switched, and remultiplexed onto outgoing lines.
A packet switch also contains buffers to ensure that coincident packet arrivals are not
lost. Thus the path traversed by a packet through a network can be modeled as a sequence
of queueing systems as shown in Figure 7.40. The dashed arrows show packets from
other flows that “interfere” with the packet of interest in the sense of contending for
buffers and transmission along the path. We also note that these interfering flows may
enter at one node and depart at some later node, since in general they belong to different
source-destination pairs and follow different paths through the network.

The performance experienced by a packet along the path is the accumulation of
the performance experienced at the N queueing systems. For example, the total end-
to-end delay is the sum of the individual delays experienced at each system. Therefore,

Packet buffer
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FIGURE 7.40 The end-to-end QoS of a packet along a path traversing N queueing
systems.
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the average end-to-end delay is the sum of the individual average delays. If we can
guarantee that the delay at each system can be kept below some upper bound, then the
end-to-end delay can be kept below the sum of the upper bounds. The jitter experienced
by packets is also of interest. The jitter measures the variability in the packet delays
and is typically measured in terms of the difference of the minimum delay and some
maximum value of delay.

Packet loss performance is also of interest. Packet loss occurs when a packet arrives
at a queueing system that has no more buffers available. Causes of packet loss include
surges in packet arrivals to a buffer and increased transmission time due to long packets
or congestion downstream. The end-to-end probability of packet loss is the probability
of packet loss somewhere along the path and is bounded above by the sum of the packet
loss probabilities at each system.

Note that the discussion here is not limited solely to connection-oriented packet
transfer. In the case of connectionless transfer of packets, each packet will experience
the performance along the path traversed. If each packet is likely to traverse a different
path, then it is difficult to make a statement about packet performance. On the other
hand, this analysis will hold in connectionless packet-switching networks for the period
of time during which a single path is used between a source and a destination.? If these
paths can be “pinned down” for certain flows in a connectionless network, then the
end-to-end analysis is valid.

Packet-switching networks are called upon to support a wide range of services
with diverse QoS requirements. To meet the QoS requirements of multiple services, a
queueing system must implement strategies for controlling the transmission bit rates
that are provided to the various information flows (called queue scheduling), and for
managing how packets are placed in the queueing system (called queue management).
We now consider a number of these strategies.

7.7.1 FIFO and Priority Queues

The simplest approach to queue scheduling involves first-in, first-out (FIFO) queueing
where packets are transmitted in order of their arrival, as shown in Figure 7.41a. Packets
are discarded when they arrive at a full buffer. The delay and loss experienced by packets
in a FIFO queueing system depend on the packet interarrival times and on the packet
lengths. As interarrivals become more bursty or packet lengths more variable, packets
will tend to bunch up and queues will then build up, causing performance to deteriorate.
Because FIFO queueing treats all packets in the same manner, it is not possible to provide
different information flows with different qualities of service. FIFO queueing systems
are also subject to hogging, which occurs when a user sends packets at a high rate and
fills the buffers in the system, thus depriving other users of access to the buffer.

The FIFO queue management can be modified to provide different characteristics
of packet-loss performance to different classes of traffic. Figure 7.41b shows an example

8For example, in IP networks the path between a source and destination remains fixed once routing updates
are processed and routing tables updated.
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with two classes of traffic. When the number of packets in a buffer reaches a certain
threshold, arrivals of lower access priority (Class 2) are not allowed into the system.
Arrivals of higher access priority (Class 1) are allowed as long as the buffer is not
full. As a result, packets of lower access priority will experience a higher packet-loss
probability.

Head-of-line (HOL) priority queueing is a second queue scheduling approach
that involves defining a number of priority classes. A separate buffer is maintained for
each priority class. As shown in Figure 7.42, each time the transmission link becomes
available the next packet for transmission is selected from the head of the line of the
highest priority queue that is not empty. For example, packets requiring low delay may
be assigned a high priority, whereas packets that are not urgent may be assigned a lower
priority. The size of the buffers for the different priority classes can be selected to meet
different loss probability requirements. While priority queueing does provide different
levels of service to the different classes, it still has shortcomings. For example, it does
not allow for providing some degree of guaranteed access to transmission bandwidth
to the lower priority classes. Another problem is that it does not discriminate among
users of the same priority. Fairness problems can arise here when a certain user hogs
the bandwidth by sending an excessive number of packets.

A third approach to queue scheduling, shown in Figure 7.43, involves sorting
packets in the buffer according to a priority tag that reflects the urgency with which
each packet needs to be transmitted. This system is very flexible because the method for
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Low-priority m When Transmission
packets l high-priority link

queue empty
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FIGURE 7.42 HOL priority queueing.
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FIGURE 7.43  Sorting packets according to priority tag.

defining priority is open and can even be defined dynamically.’ For example, the priority
tag could consist of a priority class followed by the arrival time of a packet. The resulting
system implements the HOL priority system discussed above. In a second example the
priority tag corresponds to a due date. Packets requiring smaller delays are assigned
earlier due dates and are transmitted sooner. Packets without a delay requirement get
indefinite or very long due dates, and are transmitted after all time-critical packets have
been transmitted. A third important example that can be implemented by the approach
is fair queueing and weighted fair queueing. which are discussed next.

7.7.2 Fair Queueing

Fair queueing attempts to provide equitable access to transmission bandwidth. Each
user flow has its own logical buffer. In an ideal system the transmission bandwidth, say,
C bits/second, is divided equally among the buffers that have packets to transmit.'’ The
contents of each buffer can then be viewed as a fluid that is drained continuously. The
size of the buffer for each user flow can be selected to meet specific loss probability
requirements so that the cells or packets of a given user will be discarded when that
buffer is full.

Fair queueing is “fair” in the following sense. In the ideal fluid flow situation, the
transmission bandwidth is divided equally among all nonempty buffers. Thus if the
total number of flows in the system is n and the transmission capacity is C, then each
flow is guaranteed at least C/n bits/second. In general, the actual transmission rate
experienced may be higher because buffers will be empty from time to time, so a share
larger than C/n bits/second is received at those times.

In practice, dividing the transmission capacity exactly equally is not possible. As
shown in Figure 7.44 one approach could be to service each nonempty bufter one bit at
a time in round-robin fashion. However, decomposing the resulting bit stream into the
component packets would require the introduction of framing information and extensive
processing at the output. In the case of ATM, fair queueing can be approximated in
a relatively simple way. Because in ATM all packets are the same length, the system
needs only service the nonempty buffers one packet at a time in round-robin fashion.
User flows are then guaranteed equal access to the transmission bandwidth.

9See [Hashemi 1997] for a discussion on the various types of scheduling schemes that can be implemented
by this approach.
'9This technique is called processor sharing in the computing literature.
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Figure 7.45 illustrates the differences between ideal or “fluid flow” and packet-by-
packet fair queueing. The figure assumes that buffer 1 and buffer 2 each has a single
L-bit packet to transmit at 1 = 0 and that no subsequent packets arrive. Assuming
a capacity of C = L bits/second = 1 packet/second, the fluid-flow system transmits
each packet at a rate of 1/2 and therefore completes the transmission of both packets
exactly at time ¢ = 2 seconds. The bit-by-bit system (not shown in the figure) would
begin by transmitting one bit from buffer 1, followed by one bit from buffer 2, and so
on. After the first bit each subsequent bit from buffer 1 would require 2/L seconds to
transmit. Therefore, the transmission of the packet from buffer 1 would be completed
after | +2(L — 1) = 2L — 1 bit-transmission times, which equals 2— 1/L seconds. The
packet from buffer 2 is completed at time 2 seconds. The transmission of both packets
in the fluid-flow system would be completed at time 2L /L = 2 seconds. On the other
hand, the packet-by-packet fair-queueing system transmits the packet from buffer 1 first

1k Fluid-flow system:
both packets served

Buffer 1 D at rate 1/2
atr=20

Buffer 2 [:] _ o Both packets
atr=0 complete service
atr =2
>
0 1 2
A
Packet from : Packet-by-packet system:
buffer 2 waiting ‘ buffer 1 served first at rate 1;

then buffer 2 served at rate 1

Packet from 1

buffer 1 being
served

__—Packet from buffer 2
being served

> !
1 2

o

FIGURE 7.45 Fluid-flow and packet-by-packet fair queueing
(two packets of equal length).
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and then transmits the packet from buffer 2, so the packet completion times are 1 and
2 seconds. In this case the first packet is 1 second too early relative to the completion
time in the fluid system.

Approximating fluid-flow fair queueing is not as straightforward when packets
have variable lengths. If the different user buffers are serviced one packet at a time
in round-robin fashion, we do not necessarily obtain a fair allocation of transmission
bandwidth. For example, if the packets of one flow are twice the size of packets in
another flow, then in the long run the first flow will obtain twice the bandwidth of the
second flow. A better approach is to transmit packets from the user buffers so that the
packet completion times approximate those of a fluid-flow fair-queueing system. Each
time a packet arrives at a user buffer, the completion time of the packet is derived from
a fluid-flow fair-queueing system. This number is used as a finish tag for the packet.
Each time the transmission of a packet is completed, the next packet to be transmitted
is the one with the smallest finish tag among all of the user buffers. We refer to this
system as a packet-by-packet fair-queueing system.

Consider how a finish tag may be computed. Assume that there are n flows, each
with its own buffer. Suppose for now that each buffer is served one bit at a time. Let a
round consist of a cycle in which all n buffers are offered service as shown in Figure 7.46.
The number of rounds in a time period is the number of opportunities that each buffer
has had to transmit a bit. If a packet of length k bits were to begin transmission at a
given point in time, then its packet transmission would be completed & rounds into the
future. Thus the notion of rounds can be related to relative packet completion times.
The actual duration of a given round is proportional to the actual number of buffers
Nacrive (1) that have information to transmit. When the number of active buffers is large,
the duration of a round is large; when the number of active buffers is small, the rounds
are short in duration.

Now suppose that the buffers are served as in a fluid-flow system. Also suppose
that the system is started at ¢+ = 0. Let R(¢) be the number of the rounds at time
t, that is, the number of cycles of service to all n buffers. Each time R(z) reaches a
new integer value marks an instant at which all the buffers have been given an equal
number of opportunities to transmit a bit. Because of the fluid-flow assumption, R(t)
is a continuous function that increases at a rate that is inversely proportional to the
number of active buffers; that is,

dR(t)/dt = C/nacrive(t) (7.18)
Number of rounds = Number of bit transmission opportunities FIGURE 7.46 Computing the
Rounds finishing time in
Buffer 1 pazkel-p)gg)zc?gt fair queueing
Buffer 2 and weighted fair queueing.
Buffer n
Packet completes Packet of length & bits
transmission begins transmission

k rounds later at this time
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where C is the transmission capacity. Note that the slope of R(¢) changes each time
the number of active buffers changes, so R(z) is a piecewise linear function.

Let us see how we can calculate the finish tags to approximate fluid-flow fair
queueing. Suppose that the kth packet from flow i arrives at an empty buffer at time t{ and
suppose that the packet has length P (i, k). This packet will complete its transmission
when P (i, k) rounds have elapsed, one round for each bit in the packet. Therefore, the
packet completion time will be the value of time t* when the R(¢*) reaches the value:

F(i, k)= R(t}) + P(i, k) (7.19)

We will use F (i, k) as the finish tag of the packet. On the other hand, if the kth
packet from the ith flow arrives at a nonempty buffer, then the packet will have a finish
tag F (i, k) equal to the finish tag of the previous packet in its queue F (i, k — 1) plus
its own packet length P (i, k); that is,

F(i,k)=F(,k—1)+ P(i, k) (7.20)
The two preceding equations can be combined into the following compact equation:
F(i,k) = max{F(i,k = 1), R(t;)} + P(i, k) for fair queueing. (7.21)

We reiterate: The actual packet completion time for the kth packet in flow i in a
fluid-flow fair-queueing system is the time t when R(¢) reaches the value F (i, k). The
relation between the actual completion time and the finish tag is not straightforward
because the time required to transmit each bit varies according to the number of active
buffers. However, the order in which packets from all flows complete their transmissions
follows F (i, k). Therefore the finish tags can be used as priorities in a packet-by-packet
system: Each time a packet transmission is completed, the next packet to be transmitted
is the one with the smallest finish tag.

As an example, suppose that at time + = 0 buffer 1 has one packet of length one
unit and buffer 2 has one packet of length two units. A fluid-flow system services each
buffer at rate 1/2 as long as both buffers remain nonempty. As shown in Figure 7.47,
buffer 1 empties at time ¢ = 2. Thereafter buffer 2 is served at rate 1 until it empties at
time r = 3. In the packet-by-packet fair-queueing system, the finish tag of the packet
of buffer 1 is F(1,1) = R(0) + 1 = 1. The finish tag of the packet from buffer 2
is F(2,1) = R(0) + 2 = 2. Since the finish tag of the packet of buffer 1 is smaller
than the finish tag of buffer 2, the system will service buffer 1 first. Thus the packet of
buffer 1 completes its transmissions at time # = 1 and the packet of buffer 2 completes
its transmissions at t = 3.

7.7.3 Weighted Fair Queueing

Weighted fair queueing addresses the situation in which different users have different
requirements. As before, each user flow has its own buffer, but each user flow also has
a weight that determines its relative share of the bandwidth. Thus if buffer 1 has weight
1 and buffer 2 has weight 3, then when both buffers are nonempty, buffer 1 will receive
1/(1 + 3) = 1/4 of the bandwidth and buffer 2 will receive 3/4 of the bandwidth.
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FIGURE 7.47 Fluid-flow and packet-by-packet fair queueing
(two packets of different lengths).

Figure 7.48 shows the completion times for the fluid-flow case where both buffers have
a one-unit length packet at time ¢ = 0. For the fluid-flow system, the transmission of
the packet from buffer 2 is completed at time ¢t = 4/3, and the packet from buffer 1
is completed at ¢+ = 2. The bit-by-bit approximation to weighted fair queueing would
operate by allotting each buffer a different number of bits/round. In the preceding
example, buffer 1 would receive 1 bit/round and buffer 2 would receive 3 bits/round.
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FIGURE 7.48 Fluid-flow and packet-by-packet weighted fair queueing.
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PROVIDING QoS IN THE INTERNET

To support real-time audio and video communications the Internet must provide
some level of end-to-end QoS. One approach provides differentiated service in
the sense that some classes of traffic are treated preferentially relative to other
classes. Packets are marked at the edge of the network to indicate the type of treat- *
ment that they are to receive in the routers inside the network. This approach :
does not provide strict QoS guarantees. A second approach provides guaranteed
service that gives a strict bound on the end-to-end delay experienced by all packets
that belong to a specific flow. This approach requires making resource reservations in
the routers along the route followed by the given packet flow. Weighted fairqueneing -
combined with traffic regulators are needed in the routers to provide this type of ser= .
vice. Differentiated service IP and guaranteed service IP are discussed in Chapter 10,

Weighted fair queueing is also easily approximated in ATM: In each round each
nonempty buffer would transmit a number of packets proportional to its weight. Packet-
by-packet weighted fair queueing is also easily generalized from fair queueing. Sup-
pose that there are n packet flows and that flow i has weight w;, then the packet-by-packet
system calculates its finish tag as follows:

F(i.k) = max{F(i,k — ). R(t})} + P(i.k)/u; for weighted fair queueing.
(7.22)

Thus from the last term in Equation 7.22, we see that if flow i has a weight that is
twice that of flow j, then the finish tag for a packet from flow i is calculated assuming
a depletion rate that is twice that of a packet from flow ;.

Figure 7.48 also shows the completion times for the packet-by-packet weighted fair-
queueing system. The finish tag of the packet frombuffer 1is F(1, 1) = R(0) + 1/1=1.
The finish tag of the packet from buffer 2 is F'(2, 1) = R(0) + 1/3 = 1/3. Therefore
the packet from buffer 2 is served first. The packet for buffer 2 is now completed at
time ¢+ = 1, and the packet from buffer 1 at time + = 2. Note that packet-by-packet
weighted fair queueing is also applicable when packets are of different length.

Weighted fair-queueing systems are a means for providing QoS guarantees. Sup-
pose that a given user flow has weight w; and suppose that the sum of the weights of all
the user flows is W. In the worst case when all the user buffers are nonempty, the given
user flow will receive a fraction w;/W of the bandwidth C. When other user buffers
are empty, the given user flow will receive a greater share. Thus the user is guaranteed a
minimum long-term bandwidth of at least (w;/ W)C bits/second. This guaranteed share
of the bandwidth to a large extent insulates the given user flow from the other user flows.

In addition, if the user information arrival rate is regulated to satisfy certain condi-
tions, then the maximum delay experienced in the queueing system can be guaranteed
to be below a certain value. In fact, it is possible to develop guaranteed bounds for
the end-te-end delay across a series of queueing systems that use packet-by-packet
weighted fair queueing. These bounds depend on the maximum burst that the user is
allowed to submit at each queueing system. on the weights at the various queueing
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systems, and on the maximum packet size that is allowed in the network. We return to
the details of this scheme in Section 7.8.

7.7.4 Random Early Detection

Although fair queueing provides a fair allocation of bandwidth among multiple flows,
it is rarely implemented in a core network where tens of thousands of flows may be
present at any given time. Maintaining a large number of flows requires the tracking
of many states, which can increase the implementation overhead needed to coordinate
various states and makes the system unscalable. Typically, a core node is implemented
with a limited number of logical buffers, where all the flows belonging to a given class
are queued in a separate logical buffer served in a FIFO manner. We have seen that a
FIFO system may cause a flow to hog the buffer resource and prevent other flows from
accessing the buffer. An alternative approach to preventing this unfair buffer hogging
behavior is to detect congestion when a buffer begins to reach a certain level and to
appropriately notify sources to reduce the rate at which they send packets.

Random early detection (RED) is a buffer management technique that attempts
to provide equitable access to a FIFO system by randomly dropping arriving packets
before the buffer overflows. A dropped packet provides feedback information to the
source (for example, via a missing acknowledgment) and informs the source to reduce its
transmission rate. When a given source transmits at a higher rate than others, the source
suffers from a higher packet-dropping rate. As a result, the given source reduces its
transmission rate more, resulting in more uniform transmission rates among all the
sources and more equitable access to the buffer resource.

The RED algorithm typically uses an average queue length rather than instanta-
neous queue length to decide how to drop packets. Specifically, two thresholds are
defined: min,, and max,,. When the average queue length is below min,,, RED does
not drop any arriving packets. When the average queue length is between min,, and
max,,, RED drops an arriving packet with an increasing probability as the average
queue length increases. This method of “early” drop is used to notify the source to
reduce its transmission rate before the buffer becomes full. When the average queue
length exceeds max,,, RED drops any arriving packet. Figure 7.49 shows an example
of the packet drop probability as function of the average queue length.
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7.8 TRAFFIC MANAGEMENT AT THE FLOW LEVEL

At the flow level, traffic management is concerned with managing the individual traffic
flow to ensure that the QoS (e.g., delay, jitter, loss) requested by the user is satisfied.
Flow-level traffic management typically operates on the order of milliseconds to sec-
onds. Packet switching has an advantage over circuit switching in terms of efficient
resource utilization by allowing flows to dynamically share resources in the network.
However, dynamic sharing may pose problems if the flow from each user is allowed
to enter the network without some type of control. When too many packets contend
for the same resource in the network, congestion occurs and network delay, loss, or
throughput performance declines. For example, consider the packet-switching network
shown in Figure 7.50. Suppose that nodes 1, 2, and 5 continuously transmit packets to
their respective destinations via node 4. If the aggregate incoming rate of the packet
flows to node 4 is greater than the rate the packets can be transmitted out, the buffer
in node 4 will build up. If this situation persists, the buffer eventually becomes full
and starts discarding packets. When the destination detects missing packets, it may ask
the source to retransmit the packets. The source would unfortunately obey the protocol
and send more packets to node 4, worsening the congestion even more. In turn, node 4
discards more packets, and this effect triggers the destination to ask for more retrans-
missions. The net result is that the throughput at the destination wili be very low, as
illustrated in Figure 7.51 (uncontrolled curve). The purpose of traffic management at
the flow level is to control the flows of traffic and maintain performance (controlled
curve) even in the presence of traffic overload. The process of managing the traffic flow
in order to control congestion is called congestion controD

It is tempting to.claim that congestion can be solved by just allocating a large
buffer. However, this solution merely delays the onset of congestion. Worse yet, when
congestion kicks in, it will last much longer and will be more severe. In the worst case
where the buffer size is extremely large, packets will suffer from extremely long delays.

Congestion control is a very hard problem to solve, and many congestion control
algorithms have been proposed. As with routing algorithms, we can classify congestion
control algorithms several ways. The most logical approach identifies two broad classes:
open-loop control and closed-loop control. Open-loop control preventg congestion from
occurring by making sure that the traffic ﬂow generated by the source will not degrade

Congestion FIGURE 7.50 Congestion arises when
‘ incoming rate exceeds outgoing rate.
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the performance of the network to a level below the specified QoS. If the QoS cannot
be guaranteed, the network rejects the traffic flow before it enters the network. The
function that makes the decision to accept or reject a new traffic flow is called an
admission control. Closed-loop control, on the other hand, reacts to congestion when
it is already happening or is about to happen, typically by regulating the traffic flow
according to the state of the network. Closed-loop control typically does not use any
reservation.

7.8.1 Open-Loop Control

Open-loop control does not rely on feedback information to react to congestion. Instead,
open-loop control is based on a principle that network performance is guaranteed
to all traffic flows that have been admitted into the network. To guarantee network
performance during the lifetime of admitted flows, open-loop control relies on three
mechanisms: admission control, policing, and traffic shaping.

ADMISSION CONTROL

Admission control was initially developed for virtual-circuit packet-switching networks
such as ATM but has been proposed for datagram networks as well. Admission control
in ATM operates at the connection level and is therefore called connection admission
control (CAC). Admission control in a datagram network makes sense only if packets
of a given flow follow-the same path.

{The admission control entity is a network function that computes the resource
(typically bandwidth and buffers) requirements of a new flow and determines whether
the resources along the path to be followed by the flow are available, Thus a source
initiating a new flow must first obtain permission from an admission control entity
that decides whether the flow should be accepted or rejected. If the QoS of the new
flow can be satisfied without violating QoS of existing flows, the flow is accepted;
otherwise, the flow is rejectqci;'The QoS may be expressed in terms of maximum delay,
loss probability, delay variance, or other performance measures.

“To determine whether the QoS of the flow can be satisfied, the admission control
entity has to know the traffic parameters and the QoS requirements of the flow, which
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FIGURE 7.52  Example of a traffic flow,

in turn define the contract between the source of the flow and the network. The traffic
parameters describe the traffic flow in a manner that can be readily quantified in the
computation of QoS; Typical traffic parameters include peak rate (in bits/second or
bytes/second), average rate (bits/second or bytes/second), and maximum burst size (in
bits, bytes, or seconds) The peak rate defines the maximum rate that the source will
generate its packets. The average rate defines the average rate that source will generate
its packets. The maximum burst size determines the maximum length of time the traffic
can be generated at the peak rate. Figure 7.52 shows an example of a traffic flow
generated by a source, indicating the peak rate and the average rale(]iased on the traffic
parameters and the QoS requirement, the admission control entity caltculates how much
bandwidth it has to reserve for the new ﬂo@ The amount of bandwidth generally lies
between the average rate and the peak rate and is called the effective bandwidth of the
flow. The exact calculation for effective bandwidth is very complex and is beyond the
scope of this book.

POLICING

“Once a flow is accepted by an admission control entity, the QoS will be satisfied as
long as the source obeys its negotiated traffic parameters during the lifetime of the flow.
However, if the source violates the contract, the network may not be able to maintain
acceptable performance. To prevent the source from violating its contract, the network
may want to monitor the traffic flow continuously. The process of monitoring and
enforcing the traffic flow is called policing. When the traffic flow violates the agreed-
upon contract, the network may c%&;;?'t% discard or tag the nonconforming traffic.
Tagging essentially lowers the priority of the nonconforming traffic, thus allowing
the nonconforming traffic to be carried by the network as long as sufficient network
resources are available. When network resources are exhausted, tagged traffic is the
first to be discarded.

_Most implementations of a policing device are based on the concept of a leaky
bucket. Imagine the traffic flow to a policing device as water being poured into a
bucket that has a hole at the bottom. The bucket has a_cestain depth and leaks at a
constant rate when it is not empty. A new portion of water (that is, packet) is said to
be conforming if the bucket does not overflow when the water is poured in the bucket.
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- When the bucket is full, the new portion of water is said to be nonconforming and the
water can be discarded (or channeled to another bucket after being tagged). The size
of the hole corresponds to the drain rate of the bucket. The hole ensures that the bucket
will never overflow as long as the drain rate is higher than the rate water is being poured
in. The bucket depth is used to absorb the fluctuations in the water ﬂow:If we expect
the water to flow into the bucket at a nearly constant rate, then the bucket can be made
very shallow. If the water flow fluctuates widely (that is, there is bursty traffic), the
bucket should be deeper.

There are many variations of the leaky bucket algorithm. In this section we look at
an algorithm that is specified by the ATM Forum. Here packets are assumed to be of
fixed length (i.e., ATM cells). A counter records the content of the leaky bucket. When
a packet arrives, the value of the counter is incremented by some value / provided that
the content of the bucket would not exceed a certain limit; in this case the packet is
declared to be conforming. If the content would exceed the limit, the counter remains
unchanged and the packet is declared to be nonconforming. The value I indicates the
nominal interarrival time of the packet that is being policed (typically, in units of packet
time). As long as the bucket is not empty, the bucket will drain at a continuous rate of
1 unit per packet time.

Figure 7.53 shows the leaky bucket algorithm t'.at can be used to police the traffic
flow. At the arrival of the first packet, the conteni of the bucket X is set to zero and the
last conforming time (LCT) is set to the arrival time of the first packet. The depth of
the bucket is L + I, where L typically depends on the traffic burstiness. At the arrival
of the kth packet, the auxiliary variable X’ records the difference between the bucket

Arrival of a
packet at time ¢,

Y

Y

{x' :Xv(r‘ﬁLCT))

Nonconforming
packet

Y

X=X +1 X = value of leaky bucket counter
LCT =1, X' = auxiliary variable
conforming packet LCT = last conformance time

FIGURE 7.53 Leaky bucket algorithm used for policing.
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content at the arrival of the last conforming packet and the interarrival time between
the last conforming packet and the kth packet. The auxiliary variable is constrained
to be nonnegative. If the auxiliary variable is greater than L, the packet is considered
nonconforming. Otherwise, the packet is conforming. The bucket content and the arrival
time of the packet are then updated.

A simple example of the operation of the leaky bucket algorithm is illustrated in
Figure 7.54. Here the value of I is four packet times, and the value of L is six packet
times. The arrival of the first packet increases the bucket content by four (packet times).
At the second arrival the content has decreased to three, but four more are added to
the bucket resulting in a total of seven. The fifth packet is declared as nonconforming
since it would increase the content to 11, which would exceed L + I (10). Packets 7,
8,9, and 10 arrive back to back after the bucket becomes empty. Packets 7, 8, and 9 are
conforming, and the last one is nonconforming}Q the peak rate is one packet/packet
time, then the maximum number of packets that tan be transmitted at the peak rate,
called the maximum burst size (MBS)) is three. Note that the algorithm does not

update the content of the bucket continuously but only at discrete points (arrival times
of conforming packets) indicated by the asterisks. Also note that the values of [ and L
in general can take any real numbers.

The inverse of I is often called the sustainable rate, which is the long-term average
rate allowed for the conforming traffic. Suppose the peak rate of a given traffic flow is
denoted by R and its inverse is T'; thatis, T = 1/R. Then the maximum burst size is
given by

L .
MBS =1+ ‘[—I—T—T—} (7.23)

where [x] denotes the greatest integer less than orequal to x. To understand this formula,
note that the first packet increases the bucket content to /. After the first packet the
bucket content increases by the amount of (I — T') for each packet arrival at the peak
rate. Thus we can have approximately L /(I — T) additional conforming packets. The
relations among these quantities are pictorially depicted in Figure 7.55. MBS roughly

Y
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FIGURE 7.55 Relations among MBS and other parameters.

» Time

characterizes the burstiness of the traffic. Bursty traffic may be transmitted at the peak
rate for some time and then remains dormant for a relatively long period before being
transmitted at the peak rate again. This type of traffic tends to stress the network.

A combination of leaky buckets can be used to police multiple traffic parameters
(for example, the peak rate and the sustainable rate). In this situation dual leaky buckets
such as the one shown in Figure 7.56 can be used. The traffic is first checked for the
sustainable rate at the first leaky bucket. The nonconforming packets at the first bucket
are dropped or tagged. The conforming (untagged) packets from the first bucket are
then checked for the peak rate at the second bucket. The nonconforming packets at the
second bucket are also dropped or tagged. The conforming packets are the ones that
remain untagged after both leaky buckets.

TRAFFIC SHAPING

{ When a source tries to send packets, it may not know exactly what its traffic flow
‘looks like. If the source wants to ensure that the traffic flow conforms to the parameters
specified in the leaky bucket policing device, it should first alter the traffic flow. Traffic
shaping refers to the process of altering a traffic flow to ensure conformance)As shown
in Figure 7.57, typically the traffic shaping device is located at the node just before the
traffic flow leaves a network (egress node) while the policing device is located at the
node that receives the traffic flow from another network (ingress node).
Tratfic shaping can be realized in a number of ways. A leaky bucket traffic shaper
is a very simple device, as shown in Figure 7.58. Incoming packets are first stored in
a buffer. Packets (assumed to be of fixed length) are served periodically so that the

FIGURE 7.56 A dual leaky
Incoming Leaky bucket 1 Tagged or bucket configuration.
waffic — | SCRand MBS | dropped
Untagged
traffic
A

Leaky bucket 2 Tagged or
PCR and CDVT dropped

Untagged
traffic

SCR = sustainable cell rate MBS = maximum burst size
PCR = peak cell rate CDVT = cell delay variation tolerance
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Tratfic shaping Policing  Traffic shaping Policing

Network A Network B Network C

FIGURE 7.57 Typical locations of policing and tratfic shaping
devices.

stream of packets at the output is smooth. The buffer is used to store momentary bursts
of packets. The buffer size defines the maximum burst that can be accommodated, and
incoming packets are discarded when the buffer is full. A policing device checks and
passes each packet on the ﬁy<A traffic-shaping device needs to introduce certain delays
for packets that arr'ﬁvc earlier than their scheduled departures and requires a buffer to
store these packets.’

The leaky bucket traffic shaper described above is very restricted, since the output
rate is constant when the buffer is not empty. Many applications produce variable-
rate traffic. If the traffic flows from such applications have to go through the leaky
bucket traffic shaper, the delay through the buffer can be unnecessarily long. Recall
that the traffic that is monitored by the policing device does not have to be smooth to
be conforming. The policing device allows for some burstiness in the traffic as long as
it is under a certain limit.

A more realistic shaper, called the token bucket traffic shaper, regulates only the
packets that are not conforming. Packets that are deemed conforming are passed through
without further delay. In Figure 7.59, we see that the token bucket is a simple extension
of the leaky bucket.(Tokens are generated periodically at a constant rate and are stored
in a token bucket. If\the token bucket is full, arriving tokens are discarded. A packet
from the buffer can be taken out only if a token in the token bucket can be drawn. If
the token bucket is empty, arriving packets have to wait in the packet buffer. Thus we
can think of a token as a permit to send a packet

Imagine that the buffer has a backlog of packets when the token bucket is empty.
These backlogged packets have to wait for new tokens to be generated before they can
be transmitted out. Since tokens arrive periodically, these packets will be transmitted
periodically at the rate the tokens arrive. Here the behavior of the token bucket shaper
is very similar to that of the leaky bucket shaper.

Size N

Incoming traffic Shaped tratfic
|I Ili - I I I i

l

Packet

FIGURE 7.58 A leaky bucket traftic shaper.
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FIGURE 7.59 Token bucket traffic shaper.

Now consider the case when the token bucket is not empty. Packets are transmitted
out as soon as they arrive without having to wait in the buffer, since there is a token to
draw for an arriving packet. Thus the burstiness of the traffic is preserved in this case.
However, if packets continue to arrive, eventually the token bucket will become empty
and packets will start to leave periodically. The size of the token bucket essentially
limits the traffic burstiness at the output. In the limit, as the bucket size is reduced to
zero, the token bucket shaper becomes a leaky bucket shaper.

The token bucket traffic shaper can be implemented by an algorithm that is similar
to the leaky bucket policing device shown in Figure 7.53. The corresponding token
bucket algorithm for traffic shaping is left to the reader as an exercise.

QoS GUARANTEES AND SERVICE SCHEDULING

Switches and routers in packet-switching networks use buffers to absorb temporary
fluctuations of traffic. Packets that are waiting in the buffer can be scheduled to be
transmitted out in a variety of ways. In this section we discuss how the packet delay
across a network can be guaranteed to be less than a given value. The technique makes
use of a token bucket shaper and weighted fair-queueing scheduling.

Let b be the bucket size in bytes and let r be the token rate in bytes/second. Then in
a time period 7', the maximum traffic that can exit the traffic shaper is b + r T bytes as
shown in Figure 7.60. Suppose we apply this traffic to two queueing systems in tandem
each served by transmission lines of speed R bytes/second with R > r. We assume
that the two queueing systems are empty and not serving any other flows.

Figure 7.61a shows the queueing system arrangement, and Figure 7.61b shows the
buffer occupancy as a function of time. We assume that the token bucket allows an
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y FIGURE 7.60 Maximum traffic allowed out of
token bucket shaper.

[T b bytes

instantly

r bytes/second

]

immediate burst of b bytes to exit and appear at the first multiplexer at ¢t = 0, so the
multiplexer buffer surges to b bytes at that instant. Immediately after = 0, the token
bucket allows information to flow to the multiplexer at a rate of r bytes/second, and
the transmission line drains the multiplexer at a rate of R bytes/second. Thus the buffer
occupancy falls at a rate of R — r bytes/second. An important observation is that the
buffer occupancy at 1 is always less than b bytes. In addition we note that the buffer
occupancy at a given time instant determines the delay that will be experienced by a
byte that arrives at that instant, since the occupancy is exactly the number of bytes
that need to be transmitted before the arriving byte is itself transmitted. Therefore, we
conclude that the maximum delay at the first multiplexer is bounded by b/R.

Now consider the second multiplexer. At time t = 0, it begins receiving bytes from
the first multiplexer at a rate of R bytes/second. The second multiplexer immediately
begins transmitting the arriving bytes also at a rate of R bytes/second. Therefore there
is no queue buildup in the second multiplexer, and the byte stream flows with zero
queueing delay. We therefore conclude that the information that exits the token bucket
shaper will experience a delay no greater than b/ R over the chain of multiplexers.

Suppose that the output of the token bucket shaper is applied to a multiplexer that
uses weighted fair queueing. Also suppose that the weight for the flow has been set
so that it is guaranteed to receive at least R bytes/second. It then follows that the flow
from the token bucket shaper will experience a delay of at most b/R seconds. This
result, however, assumes that the byte stream is handled as a fluid flow. [Parekh 1992]

@ No backlog
AD)=b+n of packets

m— H—
—— — —

]

Buffer Buffer
occupancy occupancy Empty
atl at2

> >

FIGURE 7.61 Delay experienced by token-bucket shaped traffic.
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showed that if packet-by-packet weighted fair queueing is used, then the maximum
delay experienced by packets that are shaped by a (b, r) token bucket and that traverse
H hops is bounded as follows:

b (H—Dm M
D< — 4 — — 7.24
==t +,§;‘TRJ (7.24)

where m is the maximum packet size for the given flow, M is the maximum packet size
in the network, H is the number of hops, and R j is the speed of the transmission line in
link j. Also note that r < R. This result provides the basis for setting up connections
across a packet network that can guarantee the packet delivery time. This result forms
the basis for the guaranteed delay service proposal for IP networks.

To establish a connection that can meet a certain delay guarantee, the call setup
procedure must identify a route in which the links can provide the necessary guaranteed
bandwidth so that the bound is met. This procedure involves obtaining information
from potential hops about their available bandwidth, selecting a path, and allocating
the appropriate bandwidth in the path.

7.8.2 Closed-Loop Control

The main objective of controlling congestion in a network is to maximize link utilization
while preventing buffer overflows due to congestion. Maximizing link utilization calls
for the sources to send packets as soon as packets are ready to be transmitted; preventing
buffer overflows calls for the sources not to send too many packets. These two conflicting
go%s are the reason why congestion control is a delicate issue to tackle.

Congestion control is usually addressed by a closed-loop control mechanism that
relies on feedback information to regulate a packet flow rate according to feedback
information about the state of the network, which may be based on buffer content,
link utilization, or other relevant congestion information\The recipient of the feedback
information usually depends on the communication layer that is responsible for con-
gestion control. In the TCP/IP environment, control is implemented at the transport
layer, and thus the recipient of the feedback information usually resides at the source.
In the ATM environment, control is implemented at the ATM layer corresponding to
the network layer, and thus the recipient of the feedback information may reside at the
interrnediate node. '

END-TO-END VERSUS HOP-BY-HOP

With end-to-end closed-loop control, the feedback information about state of the net-
work is propagated back to the source that can regulate the packet flow rate. The
feedback information may be forwarded directly by a node that detects congestion, or
it may be forwarded to the destination first which then relays the information to the
source, as shown in Figure 7.62a. Because the transmission of the feedback information
introduces a certain propagation delay, the information may not be accurate when the
source receives such information.)
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(a) Packet flow
Source Destination
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Feedback information

FIGURE 7.62 Closed-loop control: (a) end-to-end:
(b) hop-by-hop.

(Hop-by-hop control typically can react much faster than the end-to-end counterpart
due to shorter propagation delay. With hop-by-hop closed-loop control, the state of the
network is propagated to the upstream node, as shown in Figure 7.62b. When a node
detects congestion on its outgoing link, it can tell its upstream neighbor to slow down its
transmission rate. As a result, the upstream neighbor may also experience congestion
some time later if the incoming rate exceeds the outgoing transmission rate. In turn this
node tells its upstream neighbor to decrease the transmission rate. This “back-pressure”™
process from one downstream node to another node upstream may continue all the way
to the sourc%

IMPLICIT VERSUS EXPLICIT FEEDBACK

The feedback information can be implicit or explicit. With explicit feedback the node
detecting congestion initiates an explicit message that eventually arrives at the source
notifying congestion in the network. The explicit message can be transmitted as a
separate packet (often called the choke packet), or piggybacked on a data packet. The
contents of the explicit message can be in various forms. The simplest form is to use
one bit of information (often called a binary feedback information) to indicate whether
there is congestion or not. Another more elaborate form is to use richer information
for the feedback information. One example is to transmit the message in the form of
“desired rate” so that the recipient node may regulate its packet flow more precisely.

Closed-loop control in ATM networks is one example whereby each source con-
tinuously adjusts its sending rate according to explicit feedback information, which is
recorded in a bit (called the EFCI bit) of the ATM cell header. When a node detects
impending congestion, the node sets the EFCI bit of the data cells passing through the
congestion link to 1. The destination that receives these cells with EFCI bit equal to |
would send a special message to the corresponding source indicating that congestion
has been detected and the source should throttle its transmission rate.

With implicit feedback, no such explicit message is forwarded. Instead, the source
has to rely on some surrogate information to deduce congestion. One example is to use
a time-out based on missing acknowledgments from a destination to decide whether
congestion has been encountered in the network.



560 CHAPTER7 Packet-Switching Networks

TCP congestion control is one example that regulates the transmission rate using
the implicit feedback information derived from a missing acknowledgment, which
triggers the retransmission timer to time out. When the source performs the time-out,
it decreases the transmission rate by reducing its transmit window. The source then
gradually increases the transmission rate until congestion is detected again, and the
whole cycle repeats. TCP congestion control is discussed in more detail in Chapter 8.

7.9 TRAFFIC MANAGEMENT
AT THE FLOW-AGGREGATE LEVEL

At the flow-aggregate level, traffic management deals with a multiplicity of flows. Flow-
aggregate level works in a relatively long time scale on the order of minutes to days.
Traffic management at the flow-aggregate level is often called traffic engineering. The
main objective of traffic engineering is to map aggregated flows onto the network so that
resources are efficiently utilized. We have seen that shortest-path routing allow traffic
to be forwarded to a destination following the shortest path. Unfortunately, mapping
the traffic according to shortest paths may not result in overall network efficiency, as
shown in Figure 7.63a. In this example, traffic demands occur between sources 1, 2,
and 3 and destination 8. With shortest path routing, the link connecting node 4 and
node 8 is heavily utilized while other links are lightly loaded. Figure 7.63b shows an
example of a better traffic mapping where the traffic is distributed across the network
and the bottleneck link between node 4 and node 8 is removed.

The subject of traffic engineering is vast and complex. In general, effective traffic
engineering relies on knowledge of the traffic demand information. In this section we
discuss a simple technique that does not make use of traffic demand information and
is called constraint shortest-path routing. The technique is suitable for connection-
oriented packet-switching networks. Suppose that the traffic demand of bandwidth B
between a given source and destination pair is to be routed. First, the algorithm prunes
any link in the network that has available bandwidth less than B. Then, the algorithm
runs the shortest path routing to find the paths between the given source and destination

(b)

FIGURE 7.63 Mapping traffic onto the network topology.
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pair. Consider the example in Figure 7.63 and suppose that we wish to set up three paths
in the following order: node 1 to node 8 (path 1), node 2 to node 8 (path 2), and node 3
to node 8 (path 3). Assume that the bandwidth requested for each path is B and each
link has a capacity of B. Initially, path 1 follows the shortest path 1 — 4 — 8 using
the original network topology. Link (1, 4) and link (4, 8) are then pruned. Next path 2
follows the shortest path 2 — 4 — 5 — 8 using the pruned network topology. Now
links (2, 4), (4, 5), and (5, 8) are also pruned. Path 3 uses the revised pruned topology,
which gives 3 — 6 — 7 — 8 as the shortest path.

Constraint shortest-path routing does not always yield a desired result. Consider
now the case where the paths to be set up are given in the following order: path 2,
path 1, and path 3. The reader can verify that path 2 follows 2 — 4 — 8 and path 1
follows 1 — 4 — 6 — 7 — 8. Path 3 cannot be successfully established in this case.
This example shows that the order of path setup with constraint shortest-path routing
plays an important role in the eventual path layout. An optimal path layout would have
to consider all possible path requests at the same time so that optimization can be done
globally.

SUMMARY

In this.chapter we have examined packet-switching networks from several perspectives.
We began by discussing the difference between the service offered by a network and the
actual internal operation of the network. In particular we noted that the fact that a service
is connection-oriented or connectionless does not imply that the internal operation uses
the same mode.

We also examined packet-switching networks from a physical perspective and we
traced the flow of packets from computers to LANs and routers in campus and wide
area networks. We discussed the hierarchy of Internet service providers that is involved
in the handling of Internet traffic.

We discussed two approaches to operating packet networks: virtual circuits and
datagrams. The Internet and ATM networks were presented as examples. The ad-
vantages and disadvantages of the two approaches were discussed in terms of their
complexity, their flexibility in dealing with failures, and their ability to provide quality
of service. We also discussed the structure of packet switches.

We introduced several approaches to selecting routes across a network and we
examined different types of routing tables that are involved in this process. We also
discussed shortest-path algorithms and their use in synthesizing routing tables.

ATM networks were introduced as an example of connection-oriented networks.
The rich set of techniques developed for ATM was used to introduce traffic management
for packet networks in general. Traffic policing and shaping were introduced and their
combination with scheduling in providing service guarantees was also discussed. Con-
gestion control techniques for dealing with congestion in the network were introduced
for IP and for ATM networks. Finally, the chapter concluded with an introduction to
traffic engineering.
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CHECKLIST OF IMPORTANT TERMS

asynchronous transfer mode (ATM)
banyan switch

Bellman-Ford algorithm

cell

centralized routing

congestion control

connection

connectionless
connection-oriented

counting to infinity

cut-through packet switching
datagram packet switching
deflection routing

Dijkstra’s algorithm
distance-vector protocol
distributed routing

dynamic (adaptive) routing
explicit routing

fair queueing

finish tag

first-in, first-out (FIFO) queueing
flooding”

head-of-line (HOL) blocking
head-of-line (HOL) priority queueing
hop-by-hop routing

leaky bucket

link-state protocol

maximum burst size (MBS)
message switching
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policing
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source routing
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static routing

store and forward

traffic engineering

traffic management

traffic shaping

virtual channel identifier (VCI)
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PROBLEMS

7.1. Explain how a network that operates internally with virtual circuits can provide connec-
tionless service. Comment on the delay performance of the service. Can you identify
inefficiencies in this approach?

7.2. Is it possible for a network to offer best-effort connection-oriented service? What fea-
tures would such a service have, and how does it compare to best-effort connectionless
service?

7.3. Suppose a service provider uses connectionless operation to run its network internally.
Explain how the provider can offer customers reliable connection-oriented network
service.

7.4. Where is complexity concentrated in a connection-oriented network? Where is it concen-
trated in a connectionless network?

7.5. Comment on the following argument: Because they are so numerous, end systems should
be simple and dirt cheap. Complexity should reside inside the network.

7.6. In this problem you compare your telephone demand behavior and your Web demand
behavior.

(a) Arrival rate: Estimate the number of calls you make in the busiest hour of the day;
express this quantity in calls/minute. Service time: Estimate the average duration of
a call in minutes. Find the load that is given by the product of arrival rate and service
time. Multiply the load by 64 kbps to estimate your demand in bits/hour.

(b) Arrival rate: Estimate the number of Web pages you request in the busiest hour of the
day. Service time: Estimate the average length of a Web page. Estimate your demand
in bits/hour.

(¢) Compare the number of call requests/hour to the number of Web requests/hour. Com-
ment on the connection setup capacity required if each Web page request requires a
connection setup. Comment on the amount of state information required to keep track
of these connections.
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7.7

7.8

7.9

7.10

7.11

7.12

7.13

<

Apply the end-to-end argument to the question of how to control the delay jitter that is
incurred in traversing a multihop network.

Compare the operation of the layer 3 entities in the end systems and in the routers inside
the network.

Consider a “fast” circuit-switching network in which the first packet in a sequence enters
the network and triggers the setting up of a connection “on-the-fly” as it traces a path to
its destination. Discuss the issues in implementing this approach in packet switching.

Circuit switching requires that the resources allocated to a connection be released when
the connection has ended. Compare the following two approaches to releasing resources:
() use an explicit connection release procedure where the network resources are released
upon termination of the connection and (b) use a time-out mechanism where the resources
allocated to a connection are released if a “connection refresh” message is not received
within a certain time.

The oversubscription ratio can be computed with a simple formula by assuming that each
subscriber independently transmits at the peak rate of ¢ when there is data to send and zero
otherwise. If there are N subscribers and the average transmission rate of each subscribers
is r, then the probability of k subscribers transmitting data at the peak rate simultaneously

is given by
. N r k . r N—k
= k c C

The access multiplexer is said to be in the “overflow mode” if there are more than n
subscribers transmitting data simultaneously, and the corresponding overflow probability

is given by
k N—k
Z N r r
k=n+1

If a certain overflow probability is acceptable, then n is the smallest value that satisfy the
given overflow probability. Find the oversubscription ratio if N = 50, r/c = 0.01, and
0, < 0.01.

An access multiplexer serves N = 1000 subscribers, each of which has an activity factor
r/c = 0.1. What is the oversubscription ratio if an overfiow probability of 1 percent is
acceptable? If Np(1 — p) > 1, you may use an approximation technique (called the
DeMoivre-Laplace Theorem), which is given by

N 1 _ tk=Np?
P, = Fl=pWVbh Wp(-p) |
' <k)p =» JIENpA =)

In Figure 7.5 trace the transmission of IP packets from when a web page request is made

to when the web page is received. Identify the components of the end-to-end delay.

(a) Assume that the browser is on a computer that is in the same departmental LAN as
the server.

(b) Assume that the web server is in the central organization servers.

(¢) Assume that the server is located in a remote network.
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In Figure 7.5 trace the transmission of IP packets between two personal computers
running an IP telephony application. Identify the components of the end-to-end delay.
(a) Assume that the two PCs are in the same departmental LAN.

(b) Assume that the PCs are in different domains.

In Figure 7.5 suppose that a workstation becomes faulty and begins sending LAN frames
with the broadcast address. What stations are affected by this broadcast storm? Explain
why the use of broadcast packets is discouraged in IP.

Explain why the distance in hops from your ISP to a NAP is very important. What happens
if a NAP becomes congested?

A 64-kilobyte message is to be transmitted over two hops in a network. The network
limits packets to a maximum size of 2 kilobytes, and each packet has a 32-byte header.
The transmission lines in the network are error free and have a speed of 50 Mbps. Each
hop is 1000 km long. How long does it take to get the message from the source to the
destination?

An audiovisual real-time application uses packet switching to transmit 32 kilobit/second
speech and 64 kilobit/second video over the following network connection.

1 km . 3000 km . 1000 km .
Switch 1 Switch 2 Switch 3
4 10 Mbps 45 Mbps 45 Mbps
or = or
1.5 Mbps 1.5 Mbps

Two choices of packet length are being considered: In option 1 a packet contains

10 milliseconds of speech and audio information; in option 2 a packet contains 100 milli-

seconds of speech and audio information. Each packet has a 40 byte header.

(a) For each option find out what percentage of each packet is header overhead.

(b) Draw a time diagram and identify all the components of the end-to-end delay. Keep
in mind that a packet cannot be sent until it has been filled and that a packet cannot
be relayed until it is completely received (that is, store and forward). Assume that bit
errors are negligible.

(c) Evaluate all the delay components for which you have been given sufficient infor-
mation. Consider both choices of packet length. Assume that the signal propagates
at a speed of 1 km/5 microseconds. Consider two cases of backbone network speed:
45 Mbps and 1.5 Mbps. Summarize your result for the four possible cases in a table
with four entries.

(d) Which of the preceding delay components would involve queueing delays?

Suppose that a site has two communication lines connecting it to a central site. One line has
a speed of 64 kbps, and the other line has a speed of 384 kbps. Suppose each line is modeled
by an M/M/1 queueing system with average packet delay givenby E[D] = E[(X)/(1—-p)
where E[X] is the average time required to transmit a packet, X is the arrival rate in
packets/second, and p = AE[X] is the load. Assume packets have an average length of
8000 bits. Suppose that a fraction « of the packets are routed to the first line and the
remaining 1 — a are routed to the second line.
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7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

7.26.

7.27.

(a) Find the value of o that minimizes the total average delay.
(b) Compare the average delay in part (a) to the average delay in a single multiplexer that
combines the two transmission lines into a singie transmission line.

A message of size m bits is to be transmitted over an L-hop path in a store-and-forward
packet network as a series of N consecutive packets, each containing k data bits and
h header bits. Assume that m >> k + h. The transmission rate of each link is R bits/second.
Propagation and queueing delays are negligible.

(a) What is the total number of bits that must be transmitted?

(b) What is the total delay experienced by the message (that is, the time between the first

transmitted bit at the source and the last received bit at the destination)?

(c) What value of k minimizes the total delay?

Suppose that a datagram packet-switching network has a routing algorithm that generates
routing tables so that there are two disjoint paths between every source and destination
that is attached to the network. Identify the benefits of this arrangement. What problems
are introduced with this approach?

Suppose that a datagram packet-switching network uses headers of length H bytes and that
a virtual-circuit packet-switching network uses headers of length h bytes. Use Figure 7.15
to determine the length M of a message for which the virtual-circuit network delivers the
packet in less time than datagram network does. Assume packets in both networks are the
same length.

Consider the operation of a packet switch in a connectionless network. What is the source
of the load on the processor? What can be done if the processor becomes the system
bottleneck?

Consider the operation of a packet switch in a connection-oriented network. What is
the source of the load on the processor? What can be done if the processor becomes
overloaded?

Consider the following traffic patterns in a banyan switch with eight inputs and eight

outputs in Figure 7.21. Which traffic patterns below are successfully routed without

contention? Can you give a general condition under which a banyan switch is said to

be nonblocking (that is, performs successful routing without contention)?

(a) Pattern 1: Packets from inputs 0, 1, 2, 3, and 4 are to be routed to outputs 2, 3, 4, 5,
and 7, respectively.

(b) Pattern 2: Packets from inputs 0, 1, 2, 3, and 4 are to be routed to outputs 1, 2, 4, 3,
and 6, respectively.

(c) Pattern 3: Packets from inputs 0, 2, 3, 4, and 6 are to be routed to outputs 2, 3, 4, 5,
and 7, respectively.

Suppose a routing algorithm identifies paths that are “best” in the following sense:
(1) minimum number of hops, (2) minimum delay, or (3) maximum available bandwidth.
Identify the conditions under which the paths produced by the different criteria are the
same? are different?

Suppose that the virtual circuit identifiers (VCIs) are unique to a switch, not to an input
port. What is traded off in this scenario?
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7.28. Consider the virtual-circuit packet network in Figure 7.23. Suppose that node 4 in the
network fails. Reroute the affected calls and show the new set of routing tables.

7.29. Consider the datagram packet network in Figure 7.25. Reconstruct the routing tables
(using minimum-hop routing) that result after node 4 fails. Repeat if node 3 fails instead.

7.30. Consider the following six-node network. Assume all links have the same bit rate R.

(a) Suppose the network uses datagram routing. Find the routing table for each node,
using minimum-hop routing.

(b) Explain why the routing tables in part (a) lead to inefficient use of network bandwidth.

(c) Can VC routing improve efficiency in the use of network bandwidth? Explain why or
why not.

(d) Suggest an approach in which the routing tables in datagram network are modified to
improve efficiency. Give the modified routing tables.

7.31. Consider the following six-node unidirectional network where flows a and b are to be
transferred to the same destination. Assume all links have the same bit rate R = 1.

(a) If flows aand b are equal, find the maximum flow that can be handled by the network.

(b) If flow ais three times larger than flow b, find the maximum flow that can be handled
by the network.

(c) Repeat (a) and (b) if the flows are constrained to use only one path.

7.32. Consider the network in Figure 7.30.
(a) Use the Bellman-Ford algorithm to find the set of shortest paths from all nodes to
destination node 2.
(b) Now continue the algorithm after the link between node 2 and 4 goes down.

"7.33. Consider the network in Figure 7.30.
(a) Use the Dijkstra algorithm to find the set of shortest paths from node 4 to other nodes.
(b) Find the set of associated routing table entries.
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Compare source routing with hop-by-hop routing with respect to (1) packet header
overhead, (2) routing table size, (3) flexibility in route selection, and (4) QoS support, for
both connectionless and connection-oriented packet networks.

Suppose that a block of user information that is L bytes long is segmented into multiple

cells. Assume that each data unit can hold up to P bytes of user information, that each

cell has a header that is H bytes long, and that the cells are fixed in length and padded

if necessary. Define the efficiency as the ratio of the L user bytes to the total number of

bytes produced by the segmentation process.

(a) Find an expression for the efficiency as a function of L, H, and P. Use the ceiling
function c(x), which is defined as the smallest integer larger or equal to x.

(b) Plot the efficiency for the following ATM parameters: H = 5, P = 48, and L = 24k
fork=0,1,2,3,4,5, and 6.

Consider a videoconferencing application in which the encoder produces a digital stream

at a bit rate of 144 kbps. The packetization delay is defined as the delay incurred by the

first byte in the packet from the instant it is produced to the instant when the packet is

filled. Let P and H be defined as they are in Problem 7.35.

(a) Find an expression for the packetization delay for this video application as a function
of P.

(b) Find an expression for the efficiency as a function of P and H. Let H = 5 and plot
the packetization delay and the efficiency versus P.

Suppose an ATM switch has 16 ports each operating at SONET OC-3 transmission rate,
155 Mbps. What is the maximum possible throughput of the switch?

Refer to the virtual-circuit packet-switching network in Figure 7.23. How many VCIs
does each connection in the example consume? What is the effect of the length of routes
on VCI consumption?

Generalize the hierarchical network in Figure 7.26 so that the 2X nodes are interconnected
in a full mesh at the top of the hierarchy and so that each node connects to two 2% nodes
in the next lower level in the hierarchy. Suppose there are four levels in the hierarchy.
(a) How many nodes are in the hierarchy?

(b) What does a routing table look like at level j in the hierarchy, j = 1, 2, 3, and 47
(c) What is the maximum number of hops between nodes in the network?

Assuming that the earth is a perfect sphere with radius 6400 km, how many bits of
addressing are required to have a distinct address for every l cm x 1 cm square on the
surface of the earth?

Suppose that 64 kbps PCM coded speech is packetized into a constant bit rate ATM cell
stream. Assume that each cell holds 48 bytes of speech and has a 5 byte header.

(a) What is the interval between production of full cells?

(b) How long does it take to transmit the cell at 155 Mbps?

(c) How many cells could be transmitted in this system between consecutive voice cells?

Suppose that 64 kbps PCM coded speech is packetized into a constant bit rate ATM cell
stream. Assume that each cell holds 48 bytes of speech and has a § byte header. Assume
that packets with silence are discarded. Assume that the duration of a period of speech
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activity has an exponential distribution with mean 300 ms and that the silence periods
have a duration that also has an exponential distribution but with mean 600 ms. Recall
that if T has an exponential distribution with mean 1/u, then P[T > t] = e M,

(a) What is the peak cell rate of this system?

(b) What is the distribution of the burst of packets produced during an active period?
(c) What is the average rate at which cells are produced?

Suppose that a data source produces information according to an on/off process. When
the source is on, it produces information at a constant rate of 1 Mbps; when it is off, it
produces no information. Suppose that the information is packetized into an ATM cell
stream. Assume that each cell holds 48 bytes of speech and has a 5 byte header. Assume
that the duration of an on period has a Pareto distribution with parameter a = 1. Assume
that the off period is also Pareto but with parameter o. If T has a Pareto distribution with
parameter «, then P[T > 1] = < forz > 1.Ifa > 1, then E[T] = /(o — 1), and
if 0 < « < 1, then E[T] is infinite.

(a) What is the peak cell rate of this system?

(b) What is the distribution of the burst packets produced during an on period?

(c) What is the average rate at which cells are produced?

An IP packet consists of 20 bytes of header and 1500 bytes of payload. Now suppose that
the packet is mapped into ATM cells that have 5 bytes of header and 48 bytes of payload.
How much of the resulting cell stream is header overhead?

Suppose that virtual paths are set up between every pair of nodes in an ATM network.
Explain why connection setup can be greatly simplified in this case.

Suppose that the ATM network concept is generalized so that packets can be variable in
length. What features of ATM networking are retained? What features are lost?

Explain where priority queueing and fair queueing may be carried out in the generic
switch/router in Figure 7.19.

Consider the head-of-line priority system in Figure 7.42. Explain the impact on the delay
and loss performance of the low-priority traffic under the following conditions:

(a) The high-priority traffic consists of uniformly spaced, fixed-length packets.

(b) The high-priority traffic consists of uniformly spaced, variable-length packets.

(c) The high-priority traffic consists of highly bursty, variable-length packets.

Consider the head-of-line priority system in Figure 7.42. Suppose that each priority class
s divided into several subclasses with different “drop” priorities. Each priority subclass
has a threshold that if exceeded by the queue length results in discarding of arriving
packets from the corresponding subclass. Explain the range of delay and loss behaviors
that are experienced by the different subclasses.

Incorporate some form of weighted fair queueing in the head-of-line priority system in
Figure 7.42 so that the low-priority traffic is guaranteed to receive r bps out of the total
bit rate R of the transmission link. Explain why this feature may be desirable. How does
it affect the performance of the high-priority traffic?

Consider a packet-by-packet fair-queueing system with three logical buffers and with a
service rate of one unit/second. Show the sequence of transmissions for this system for the
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following packet arrival pattern. Buffer 1: artival at time ¢ = 0, length 2; arrival at ¢ = 4,
length 1. Buffer 2: arrival at time ¢ = 1, length 3; arrival at ¢ = 2, length 1. Buffer 3:
arrival at time ¢ = 3, length 5.

Repeat Problem 7.51 if buffers 1, 2, and 3 have weights, 2, 3, and 5, respectively.

Suppose that in a packet-by-packet weighted fair-queueing system, a packet with finish
tag F enters service at time ¢. Is it possible for a packet to arrive at the system after time
t and have a finish tag less than F? If yes, give an example. If no, explain why.

Deficit round-robin is a scheduling scheme that operates as follows. The scheduler visits
the buffers in round-robin fashion. A deficit counter is maintained for each buffer. When
the scheduler visits a buffer, the scheduler adds a quantum of service to the deficit counter,
and compares the resulting value to the length of the packet at the head of the line. If the
counter is larger, the packet is served and the counter is reduced by the packet length.
If not, the deficit is saved for the next visit. Suppose that a system has four buffers and
that these contain packets of length 16, 10, 12, and 8 and that the quantum is 4 units.
Show the deficit counter at each buffer as a function of time and indicate when the packets
are transmitted.

Should packet-level traffic management be performed in the core of the network where
the packet streams have been aggregated to multiGigabit/second bit rates? Discuss the
alternative of using TDM circuits to carry packet streams in the core network.

Queue management with random early detection (RED):

(a) Explain why RED helps prevent TCP senders from detecting congestion and slowing
down their transmission rates at the same time.

(b) Discuss the effect of RED on network throughput.

(c) Discuss the implementation complexity of the RED algorithm.

(d) Discuss what would happen if instantaneous queue length were used instead of average
queue length.

(e) Explore ways to find reasonable values for the RED parameters (i.e., miny,, max,,,
and the packet drop probability when the average queue length reaches max,;).

Suppose that ATM cells arrive at a leaky bucket policer attimesr = 1,2, 3, 5,6, 8, 11, 12,
13,15, and 19. Assuming the same parameters as the example in Figure 7.54, plot the
bucket content and identify any nonconforming cells. Repeat if L is reduced to 4.

Modify the leaky bucket algorithm in Figure 7.53 if packet length is variable.

Explain the difference between the leaky bucket traffic shaper and the token bucket traffic
shaper.

Show the algorithm for token bucket traffic shaper using a flow chart similar to the one
shown in Figure 7.53 for policing. The flow chart begins with a departure of a packet k
at time t4(k) and calculates the departure time for packet k + 1. Define the necessary
parameters and assume that packet length is fixed.

Explain where the policing device and the traffic shaping device should be located in the
generic packet switch in Figure 7.19.
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7.62. Which of the parameters in the upper bound for the end-to-end delay (Equation 7.24) are

7.63

7.64

controllable by the application? What happens as the bit rate of the transmission links
becomes very large?

Suppose a source with an unlimited amount of information to transmit uses a closed-loop
control to regulate the transmission rate according to feedback information. If the feedback
information indicates that there is no congestion, the source continuously increases its
transmission rate in a linear fashion. If the feedback information indicates congestion
along the path, the source sets its transmission rate to zero and then repeats the cycle by
continuously increasing its transmission rate until another congestion is detected. Assume
that it takes Tseconds for the feedback information to reach the source after congestion
occurs. Sketch the transmission rate at the source versus time trajectory for a low and a
high value of T. Explain how propagation delay T plays a role in closed-loop control.

Consider the network in Figure 7.63. Suppose that paths need to be set up in the following

order: nodes 5t0 8, 1t08,2t04,3t08,3t05,2t0 1,1 t03.3t06,6t07,and 7 to 8.

Assume that each link has a capacity of one unit and each path requires bandwidth of

one unit.

(a) Use shortest-path routing to set up as many paths as possible. How many paths are
blocked?

(b) Use constraint shortest-path routing to set up as many paths as possible. How many
paths are blocked?

(c) Can you suggest an improvement to constraint shortest-path routing?
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TCP/IP

The Internet Protocol (IP) enables communications across a vast and heterogeneous
collection of networks that are based on different technologies. Any host computer that
is connected to the Internet can communicate with any other computer that is also
connected to the Internet. The Internet therefore offers ubiquitous connectivity and the
economies of scale that result from large deployment.

The transport layer offers two basic communication services that operate on top of
IP: Transmission Control Protocol (TCP) reliable stream service and User Datagram
Protocol (UDP) datagram service. Any application layer protocol that operates on top
of either TCP or UDP automatically operates across the Internet. Therefore the Internet
provides a ubiquitous platform for the deployment of network-based services.

In Chapter 2 we introduced the TCP/IP protocol suite and showed how the various
layers work together to provide end-to-end communications support for applications.
In this chapter we examine the TCP/IP protocol suite in greater detail.

The chapter is organized as follows:

1. TCP/IP architecture. We have designed this book so that TCP/IP is introduced
gradually throughout the text. In this section we summarize the TCP/IP concepts that
are introduced in previous chapters. We also introduce commonly used definitions
in the context of TCP/IP.

2. Internet Protocol (IP). We examine the structure of the network layer: the IP packet,
the details of IP addressing, routing, and fragmentation and reassembly. We also
discuss how IP is complemented by the Internet Control Message Protocol (ICMP).

3. IP version 6. We discuss the motivations for introducing a new version of IP, and
we describe the features of IP version 6.

4. Transport layer protocols. We discuss the structure of the transport layer: UDP and
TCP. We first examine UDP. We then examine in detail the structure of TCP and its
protocol data unit (PDU), and we discuss the state transition diagram of the connec-
tion management process. We also describe the TCP’congestion control mechanism.

572
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5. Internet routing. A key element of IP is the routing protocols that are used to synthe-
size the routing tables that direct packets in the end systems and in the routers. We
introduce the Routing Information Protocol (RIP) and the Open Shortest Path First
(OSPF) Protocol for building routing tables within a domain. We also introduce the
Border Gateway Protocol (BGP) for interdomain routing.

6. Multicast routing. We introduce approaches to multicast routing. We a «0 discuss the
Internet Group Management Protocol (IGMP) that enables hosts to join a multicast
group.

7. DHCP and mobile IP. In the final section, we discuss two key protocols: Dynamic
Host Configuration Protocol (DHCP) provides a mechanism for the temporary allo-
cation of IP addresses to hosts; mobile IP allows a device to use the same IP address
regardless of where it attaches to the network.

8.1 THE TCP/IP ARCHITECTURE

_ The TCP/IP protocol suite usually refers not only to the two most well-known protocols
called the Transmission Control Protocol (TCP) and the Internet Protocol (IP) but also
to other related protocols such as the User Datagram Protocol (UDP), the Internet
Control Message Protocol (ICMP) and the basic applications such as HTTP, TELNET,
and FTB.) The basic structure of the TCP/IP protocol suite is shown in Figure 8.1.

We saw in Chapter 2 that application layer protocols such as FTP and HTTP send
messages using TCP. Application layer protocols such as SNMP and DNS send their
messages using UDP The PDUs exchanged by the peer TCP protocols are called TCP
segments or segments, while those exchanged by UDP protocols are called UDP
datagrams or datagrams) IP multiplexes TCP segments and UDP datagrams and
performs fragmentation, if necessary, among other tasks to be discussed below. The

FIGURE 8.1 TCP/IP
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FIGURE 8.2  Encapsulation of PDUs in TCP/IP and addressing information in
the headers (with HTTP as the application layer example).

protocol data units exchanged by IP protocols are called IP packets or packets.! IP
packets are sent to the network interface for delivery across the physical nétwork. At
the receiver, packets passed up by the network interface are demultiplexed to the ap-
propriate protocol (IP, ARP, or RARP). The receiving IP entity determines whether a
packet should be sent to TCP or UDP. Finally, TCP (UDP) sends each segment (data-
gram) to the appropriate application based on the port number. The network interface
can use a variety of technologies such as Ethernet, token ring, ATM, PPP over various
transmission systems, and others.

The PDU of a given layer is encapsulated in a PDU of the layer below as shown
in Figure 8.2. For example, an HTTP GET command is passed to the TCP layer,
which encapsulates the message into a TCP segment. The segment header contains
an ephemeral port number for the client process and the well-known port 80 for the
HTTP server process. The TCP segment in turn is passed to the IP layer where it is
encapsulated in an IP packet. The IP packet header contains an IP nerwork address for
the sender and an IP network address for the destination. IP network addresses are
said to be logical because they are defined in terms of the logical topology of the
routers and end systems. The IP packet is then passed through the network interface
and encapsulated into a PDU of the underlying network. In Figure 8.2 the IP packet is
encapsulated into an Ethernet frame. The frame header contains physical addresses that
identify the physical endpoints for the Ethernet sender and the receiver. The logical IP

'IP packets are sometimes called 1P datagrams. To avoid confusion with UDP datagrams, in this text we
use the term packets to refer to the PDUs at the IP layer.
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Machine A Machine B FIGURE 8.3 The Internet and
network interface layers.
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addresses need to be converted into specific physical addresses to carry out the transfer
of bits from one device to the other. This conversion is done by an address resolution
protocol. : '

T Each host in the Internet is identified by a globally unique IP address. An IP address
is divided into two parts: a nenwork ID and a host ID. The network ID must be obtained
from an organization authorized to issue IP addresses. The Internet layer provides for
the transfer of information across multiple networks through the use of routers, as
shown in Figure 8.3. IP packets are exchanged between routers without a connection
setup; they are routed independently and may traverse different paths. The routers that
interconnect the intermediate networks may discard packets when they encounter con-
gestion. The responsibility for recovery from these losses is passed on to the transport
layer. » ]

" “The network interface layer is particularly concerned with the protocols that are
u&d to access the intermediate networks. At each router the network interface layer is
used to encapsulate the IP packet into a packet or frame of the underlying network or
link. The IP packet is recovered at an exit router of the given network. This router must
determine the next hop in the route to the destination and then encapsulate the IP packet
into the frame of the type of the next network or link\This approach provides a clear
separation of the Internet layer from the technology-de endent network interface layer.
This approach also allows the Internet layer to provide a data transfer service that is
transparent in the sense of not depending on the details of the underlying networks.
Different network technologies impose different limits on the size of the blocks that
they can handle. IP must accommodate the maximum transmission unit of an underlying
network or link by implementing segmentation and reassembly as needed.

To enhance the scalability of the routing algorithms and to control the size of
the routing tables, additional levels of hierarchy are introduced in the IP addresses.
‘Within a domain the host address is further subdivided into a subnetwork part and an
associated host pg@ This process facilitates routing within a domain. yet can remain
transparent to the outside world. At the other extreme, addresses of multiple domains
can be aggregated to create supernets. We discuss these key issues in Section 8.2.
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8.2 THE INTERNET PROTOCOL

The Internet Protocol (IP) (RFC 791) is the heart of the TCP/IP protocol suite. IP corre-
sponds to the network layer in the OSI reference model and provides a connectionless
best-effort delivery service to the transport layer. Recall that a connectionless service
does not require a virtual circuit to be established before data transfer can begin. The
term best-effort indicates that IP will try its best to forward packets to the destination,
but does not guarantee that a packet will be delivered to the destination. The term is also
used to indicate that IP does not make any guarantee on the QoS.? An application re-
quiring high reliability in packet delivery must implement the reliability function within
a higher-layer protocol. Thus IP adopts the end-to-end argument discussed in Chap-
ter 7 and relies on the end systems, if needed, to ensure that each packet transmitted
at the source is received correctly at the destination. This design decision reduces the
complexity of IP and increases its flexibility.

8.2.1 IP Packet

To understand the service provided by the IP entity, it is useful to examine the IP packet
format, which contains a header part and a data part. The format of the IP header is
shown in Figure 8.4.

The header has a fixed-length component of 20 bytes plus a variable-length com-
ponent consisting of options that can be up to 40 bytes. IP packets are transmitted
according to network byte order in the following groups: bits 0-7, bits 8-15, bits 16~
23, and finally bits 24-31 for each row. The meaning of each field in the header follows.

Version: The version field indicates the version number used by the IP packet so
that revisions can be distinguished from each other. The current IP version is 4.
Version 5 is used for a real-time stream protocol called ST2, and version 6 is used
for the new generation IP known as IPv6 (to be discussed in the Section 8.3).

0 4 8 16 19 24 31
Version IHL Type of service
Al Identification ‘ _ i o ; Fiags
Time to live Protocol
Destination IP address

FIGURE 8.4 [P version 4 header.

2In Chapter 10 we discuss work on integrated services and differentiated IP services that provide some form
of QoS in IP.
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Internet header length: The Internet header length (IHL) specifies the length of
the header in 32-bit words. If no options are present, IHL will have a value of 5.
The length of the options field can be determined from THL.

Type of service: The type of service (TOS) field traditionally specifies the priority
of the packet based on delay, throughput, reliability, and cost requirements.
Three bits are assigned for priority levels (called “precedence”) and four bits
for the specific requirement (i.e., delay, throughput, reliability, and cost). For
example, if a packet needs to be delivered to the destination as soon as possible,
the transmitting IP module can set the delay bit to one and use a high-priority
level. The TOS field is not in common use and so the field is usually set to zero.
Recent work in the Differentiated Services Working Group of IETF redefines
the TOS field in order to support other services that are better than the basic best
effort. The differentiated services model is discussed in Chapter 10.

Total length: The total length specifies the number of bytes of the IP packei
including header and data. With 16 bits assigned to this field, the maximum
packet lzngth is 65,535 bytes. In practice the maximum possible length is very
rarely used, since most physical networks have their own length limitation. For
example, Ethernet limits the payload length to 1500 bytes.

Identification, flags, and fragment offset: These fields are used for fragmentation
and reassembly and are discussed below.

Time to live: The time-to-live (TTL) field is defined to indicate the amount of
time in seconds the packet is allowed to remain in the network. However, most
routers interpret this field to indicate the number of hops the packet is allowed to
traverse in the network. Initially, the source host sets this field to some value. Each
router along the path to the destination decrements this value by one. If the value
reaches zero before the packet reaches the destination, the router discards the
packet and sends an error message back to the source. With either interpretation,
this field prevents packets from wandering aimlessly in the Internet.

Protocol: The protocol field specifies the upper-layer protocol that is to receive
the IP data at the destination host. Examples of the protocols include TCP
(protocol = 6), UDP (protocol = 17), and ICMP (protocol = 1).

Header checksum: The header checksum field verifies the integrity of the header
of the IP packet. The data part is not verified and is left to upper-layer protocols.
If the verification process fails, the packet is simply discarded. To compute the
header checksum, the sender first sets the header checksum field to 0 and then
applies the Internet checksum algorithm discussed in Chapter 3. Note that when
a router decrements the TTL field, the router must also recompute the header
checksum field.

Source IP address and destination IP address: These fields contain the addresses
of the source and destination hosts. The format of the IP address is discussed
below.

Options: The options field, which is of variable length, allows the packet to request
special features such as security level, route to be taken by the packet, and
timestamp at each router. For example, a source host can use the options field
to specify a sequence of routers that a datagram is to traverse on its way to
the destination host. Detailed descriptions of these options can be found in
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[RFC 791]. Router alert is a new option introduced to alert routers to look inside
the IP packet. The option is intended for new protocols that require relatively
complex processing in routers along the path [RFC 2113]. It is used by RSVP,
which is discussed in Chapter 10.

Padding: This field is used to make the header a multiple of 32-bit words.

When an IP packet is passed to the router, the following procéssing takes place.
First the header checksum is computed and the fields in the header (version and total
length) are checked to see if they contain valid values. Next the router identifies the
next hop for the IP packet by consulting its routing table. Then the fields that need to be
changed are updated. For example, the TTL and header checksum fields always require
updating. The IP packet is then forwarded along the next hop.

Figure 8.5 shows an example of an IP packet header in an SMTP example. The
middle pane shows all the fields of the IP packet header for frame 1. The packet uses
IPv4 so the version number is 4. The header length is 20 bytes. The TOS field is shown
as the Differentiated Service Field in keeping with recent redefinition of the field. The
details of the flag field show that the “don’t fragment” bit is set. The TTL is set to
53 hops, and the protocol field is set to 6 for TCP. This is followed by the checksum
and the source and destination IP addresses.
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FIGURE 8.5 Example of an'IP packet header.
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8.2.2 IP Addressing

To identify each node on the Internet, we have to assign a unique address to each node.
A node (such as a router or a multihomed host) may have multiple network interfaces
with each interface connected to a different network. An analogy of this situation is
a house having multiple doors with one door facing a street called Main Street and
another facing a different street called Broadway. In this situation an IP address is
usually associated with the network interface or the network connection rather than
with the node. Thus, in our analogy. an address is assigned to each door of a house
rather than to the house itself. For a node with a single network interface (typically
called a host), we can safely think of the IP address as the identity of the host.

( An IP address has a fixed length of 32 bits. The address structure was originally
defined to have a two-level hierarchy: network ID and host ID. The network ID identi-
fies the network the host is connected to. Consequently, all hosts connected to the same
network have the same network ID. The host ID identifies the network connection to the
host rather than the actual hos?, An implication of this powerful aggregation concept
is that a router can forward packets based on the network ID only, thereby shorten-
ing the size of the routing table signiﬁcantly.\The host ID is assigned by the network
administrator at the local site. The network ID for an organization may be assigned by
the ISP)An ISP in turn may request the network ID from its regional Internet registry:
American Registry for Internet Numbers (ARIN), Réseaux [P Européens (RIPE), or
Asia Pacific Network Information Center (APNIC). When TCP/IP is used only within
an intranet (an internal and private internet), the local network administrator may wish
to assign the network ID on its own. However, the address will not be recognized by
a host on the global Internet. The formats of the “classful” IP address are shown in
Figure 8.6. The bit position shows the number of bits from the most significant bit.

( The IP address structure is divided into five address classes: Class A, Class B,
Class C, Class D, and Class E, identified by the most significant bits of the address
as shown in the figure. Class A addresses have seven bits for network IDs and 24 bits

Bit
position 0 1 2 3 8 16 31

ClassA |0 Net ID Host ID

ClassB{1{0 Net ID Host ID

ClassC|1{1}10 Net ID HostID

ClassD}1}1{1}0 Multicast address

ClassE|1}1]1}1 Reserved for experiments

FIGURE 8.6 The five classes of [P addresses.
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for host IDs, allowing up to 126 networks and about 16 million hosts per network.
Class B addresses have 14 bits for network IDs and 16 bits for host IDs, allowing about
16,000 networks and about 64,000 hosts for each network. Class C addresses have
21 bits for network IDs and 8 bits for host IDs, allowing about 2 million networks and
254 hosts per network. Class D addresses are used for multicast services that allow
a host to send information to a group of hosts simultaneously. Class E addresses are
reserved for experiments..

N { AnID that contains all Is or all Os has a special purpose. A host ID that contains all
Is is meant to broadcast the packet to all hosts on the network specified by the network
ID. If the network ID also contains all 1s, the packet is broadcast on the local network,

‘A host ID that contains all Os refers to the network specified by the network ID, rather
than to a host. It is possible for a host not to know its IP address immediately after
being booted up. In this case the host may transmit packets with all Os in the source
address in an attempt to find out its own IP address. The machine is identified by its
MAC address. Other hosts 1nterpret the packet as ongmatmg from “this” host.

byte being represented by a decimal number and separated by a dot. For example, an
IP address of ,

10000000 10000111 01000100 00000101
is written as
128.135.68.5

in dotted-decimal notation. The discerning student should notice immediately that this
address is a Class B address. As we saw before, some of the values of the address fields
(such as all Os and all 1s) are reserved for special purposes. Another important special
value is 127.X.Y.Z (X, Y, and Z can be anything), which is used for loopback. When a
host sends a packet with this address, the packet is returned to the host by the IP protocol
software without transmitting it to the physical network. The loopback address can be
used for interprocess communication on a local host via TCP/IP protocols and for
debugging purposes.

A set of specific ranges of IP addresses have been set aside for use in private
networks (RFC 1918). These addresses are used within internets that do not connect
directly to the Internet, for example, home networks. These addresses are considered
unregistered and routers in the Internet must discard packets with these addresses. A
range of addresses has been defined for each IP class:

Range 1: 10.0.0.0 to 10.255.255.255
Range 2: 172.16.0.0 to 172.31.255.255
Range 3: 192.168.0.0 to 192.168.255.255 (used in home LANSs)

Network address translation is used to connect to the global Internet.
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FIGURE 8.7 Introducing another hierarchical level through subnet addressing.
8.2.3 Subnet Addressing

The original IP addressing scheme described above has some drawbacks. Consider a
typical university in the United States that has a Class B network address (which can
support about 64,000 hosts connected to the Internet). With the original addressing
scheme, it would be a gigantic task for thé local network administrator to manage all
64.000 hosts. Moreover, a typical campus would have more than one local network,
requiring the use of multiple network addresses. To solve these problems, subnet ad-
dressing was introduced in the mid-1980s when most large organizations began moving
their computing platforms from mainframes to networks of workstations. The basic idea
of subnetting is to add another hierarchical level called the “subnet” as shown in Fig-
ure 8.7. The beauty of the subnet-addressing scheme is that it is oblivious to the network
outside the organization. That is, a host outside this organization would still see the
original address structure with two levels. Inside the organization the local network ad-
ministrator is free to choose any combination of lengths for the subnet and host ID fields.

As an illustration. consider an organization that has been assigned a Class B IP ad-
dress with a network ID of 150.100. Suppose the organization has many LANs, each
consisting of no more than 100 hosts. Then seven bits are sufficient to uniquely identify
each host in a subnetwork. The other nine bits can be used to identify the subnetworks
within the organization. If a packet with a destination IP address of 150.100.12.176
arrives at the site from the outside network, which subnet should a router forward this
packet to? To find the subnet number, the router needs to store an additional quantity
called a subnet mask, which consists of binary 1s for every bit position of the address
except in the host ID field where binary Os are used. For our example, the subnet mask is

TE1RL110 LLTRLLLE i1l 10000000

which corresponds to 255.255.255.128 in dotted-decimal notation. The router can de-
termine the subnet number by performing a binary AND between the subnet mask and
the IP address. In our example the IP address is given by '

10010110 01100100 00001100 10110000

VY
Thus the subnet number becomes '
10010110 01100100 00001100 10000000

corresponding to 150.100.12.128 in dotted-decimal notation. This number is used to
forward the packet to the correct subnetwork inside the organization. Note that IP ad-
dress 150.100.12.128 is used to identify the subnetwork and IP address 150.100.12.255
is used to broadcast packets inside the subnetwork. Thus a host connected to this sub-
network must have an IP address in the range 150.100.12.129 to 150.100.12.254.
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IDCVWIIWON Subnetwork Addressing

Consider a site that has been assigned a Class B IP address of 150.100.0.1, as shown
in Figure 8.8. The site has a number of subnets and many hosts (H) connected by
routers (R). The figure shows only three subnets and five hosts for simplicity. Assume
that the subnet ID field is nine bits long and the host ID field is seven bits long.

150.100.12.154 150.100.12.176 ~

150.100.12.128
150.100.12.129

150.100.0.1 pokr _

To the rest of
the Internet

150.100.12.4 150.100.12.24 150.100.12.55
150.100.12.0

150.100.12.1

150.100.15.54 150.100.15.11

150.100.15.0

FIGURE 8.8 Example of address assignment with subnetting.

When a host located outside this network wants to send a packet to a host on
this network, all that external routers have to know is how to get to network address
150.100.0.1. This concept is very powerful, since it hides the details of the internal
network configuration. Let’s see how the internal routers handle arriving packets.

Suppose a packet having a destination IP address of 150.100.15.11 arrives from
the outside network. R1 has to know the next-hop router to send the packet to. The
address 150.100.15.11 corresponds to the binary string 10010110 01100100 00001111
00001011.% R1 knows that a nine-bit subnet field is in use, so it applies the following
mask .to extract the subnetwork address from the IP address: 11111111 11111111
11111111 10000000. The result is then 10010110 01100100 00001111 00000000,
which corresponds to 150.100.15.0. Router R1 looks up this subnet number in its routing
table, and finds the corresponding entry to specify the next-hop router address for R2,
which is 150.100.12.1. When R2 receives the packet, R2 performs the same process
and finds out that the destination host is connected to one of its network interfaces. It
can thus send the packet directly to the destination.

3150 = 128 + 16 +.4 + 2, which gives 10010110; similarly 100 = 64 + 32+ 4; 15 = 8 + 4 +
241511 =84+2+41.
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8.2.4 IP Routing

The IP layer in the end-system hosts and in the routers work together to route packets
from IP network sources to destinations. The IP layer in each host and router maintains
a routing table that it uses to determine how to handle each IP packet. Consider the
action of the originating host. If its routing table indicates that the destination host is
directly connected to the originating host by a link or by a LAN, then the IP packet is
sent directly to the destination host using the appropriate network interface. Otherwise,
the routing table typically specifies that the packet is to be sent to a default router that
is directly connected to the originating host. Now consider the action of a router. When
a router receives an IP packet from one of the network interfaces, the router examines
its routing table to see whether the packet is destined to itself, and if so, delivers the
packet to the appropriate higher-layer protocol. If the destination IP address is not the
router’s own address, then the router determines the next-hop router and the associated
network interface, and then forwards the packet.

Each row in the routing table must provide the following information: destination
IP address; IP address of next-hop router; several flag fields; outgoing network interface;
and other information such as subnet mask, physical address, and statistics information.
Several types of flags may be defined. For example, the H flag indicates whether the
route in the given row is to a host (H = 1) or to a network (H = 0). The G flag indicates
whether the route in the given row is to a router (gateway; G = 1) or to a directly
connected destination (G = 0).

Each time a packet is to be routed, the routing table is searched in the following
order. First, the destination column is searched to see whether the table contains an
entry for the complete destination IP address. If so, then the IP packet is forwarded
according to the next-hop entry and the G flag. Second, if the table does not contain the
complete destination IP address, then the routing table is searched for the destination
network ID. If an entry is found, the IP packet is forwarded according to the next-hop
entry and the G flag. Third, if the table does not contain the destination network ID,
the table is searched for a default router entry, and if one is available, the packet is
forwarded there. Finally, if none of the above searches are successful, then the packet
is declared undeliverable and an ICMP “host unreachable error” packet is sent back to
the originating host. (ICMP is discussed in Section 8.2.9.)

D GNIIGRM Routing with Subnetworks

Suppose that host H5 wishes to send an IP packet to host H2 in Figure 8.8. H2 has
IP address 150.100.12.176 (10010110 01100100 00001100 10110110). Let us trace
the operations in carrying out this task.

The routing table in H5 may look something like this:

l
3

Destination Next-Hop Flags Network Interface
127.0.0.1 127.0.0.1 H 100
default 150.100.15.54 G emd0

150.100.15.0 150.100.15.11 emd0
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The first entry is the loopback interface where the H indicates a host address, and
100 by convention is always the loopback interface. The second entry is the default
entry, with next-hop router R2 (150.100.15.54), which is a router, so G = 1, and with
Ethernet interface emd0. The third entry does not have H set, so it is a network address;
G is also not set, so a direct route is indicated and, by convention, the next-hop entry is
the IP address of the outgoing network interface. '

HS first searches its routing table for the IP packet destination address
150.100.12.176. When H5 does not find the entry, it then searches for the destina-
tion network ID 150.100.12.128. Finally, HS finds the default route to R2 and forwards
the IP packet across the Ethernet.

The routing table in R2 may look something like this:

Destination Next-Hop Flag Network Interface
127.0.0.1 127.0.0.1 H 100
default 150.100.12.4 G emd0
150.100.15.0 150.100.15.54 emdl
150.100.12.0 150.100.12.1 emd0

R2 searches its routing table and forwards the IP packet to router R1, using the default
route. R1 has the following entries in its routing table:

Destination Next -Hop Flag Network Interface
127.0.0.1 127.0.0.1 H 100
150.100.12.176 150.100.12.176 emd0

150.100.12.0 150.100.12.4 emdl .
150.100.15.0 150.100.12.1 G emdl

R1 searches its routing table and finds a match to the host address 150.100.12.176 and
sends the packet through network interface emdo, which delivers the packet to H2.

The netstat command allows you to display the routing table in your workstation.
Check the manual for your system on how to use this command.

8.2.5 Classless Interdomain Routing (CIDR)

Dividing the IP address space into A, B, and C classes turned out to be inflexible. While
on the one hand most organizations utilize the Class B address space inefficiently, on
the other hand most organizations typically need more addresses than can be provided
by a Class C address space. Giving a Class B address space to each organization would
have exhausted the IP address space easily because of the rapid growth of the Internet.
In 1993 the classful address space restriction was lifted. An arbitrary prefix length to
indicate the network number, known as classless interdomain routing (CIDR),* was
adopted in place of the classful scheme [RFC 1518]. Using a CIDR notation, a prefix
205.100.0.0 of length 22 is written as 205.100.0.0/22. The /22 notation indicates that
the network mask is 22 bits, or 255.255.252.0.

4CIDR is pronounced like “cider.”
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With CIDR, packets are routed according to the prefix of the IP address without dis-
tinguishing different address classes. The entries in a CIDR routing table contain a 32-bit
IP address and a 32-bit mask. CIDR enables a technique called supernetting to allow a
single routing entry to cover a block of classful addresses. Forexample, instead of having
four entries for a contiguous set of Class C addresses (e.g., 205.100.0.0, 205.100.1.0,
205.100.2.0, and 205.100.3.0), CIDR allows a single routing entry 205.100.0.0/22,
which includes all IP addresses from 205.100.0.0 to 205.100.3.255. To see the route
aggregation process in more detail, we note that the original four Class C entries

Ciass C address 205.100.0.0 = 11002101 01100100 $05CCO0G0 00000000
Class C address 5.100.1.0 = 110031101 61100100 H0000001 00000000
Class C address 205..00.2.0 = 11001101 011CC100 00000010 00000000
Class C address 205.100.3.0 = 11001101 0110C1CJ 00000011 00000000
become

Mask 255.255.252.0 = 111121111 11111111 11111100 00000000

Supernet address 205.100.0.0 11001101 01100100 0000000G 00000000

RFC 1518 describes address allocation policies to capitalize on CIDR’s ability to
aggregate routes. For example, address assignments should reflect the physical topology
of the network: in this case IP address prefixes should correspond to continents or na-
tions. This approach facilitates the aggregation of logical packet flows into the physical
flows that ultimately traverse the network. Similarly, transit routing domains that carry
traffic between domains should have unique IP addresses, and domains that are attached
to them should begin with the transit routing domain’s prefix. These route aggrega-
tion techniques resulted in a significant reduction in routing table growth, which was
observed after the deployment of CIDR. Without the CIDR deployment, the default-free
routing table size at the core of the Internet would have easily exceeded 100,000 routes
in 1996. CIDR was able to reduce the routing table size to around 50,000 routes in
1998, and in 2003 the table size has grown to slightly above 100,000 routes.

The use of variable-length prefixes requires that the routing tables be searched to
find the longest prefix match. For example, a routing table may contain entries for the
above supernet 205.100.0.0/22 as well as for the even larger supernet 205.100.0.0/20.
This situation may arise when a large number of destinations have been aggregated
into the block 205.100.0.0/20, but packets destined to 205.100.0.0/22 are to be routed

- differently. A packet with destination address 205.100.1.1 will match both of these
entries, so the algorithm must select the match with the longest prefix.

Routing tables can contain tens of thousands of entries, so efficient, fast, longest-
prefix matching algorithms are essential to implement fast routers. A number of al-
gorithms have been developed to perform table lookup. For example, see [Degermark
1998] and [Waldvogel 1998].

8.2.6 Address Resolution

In Section 8.2.4, we assume that a host can send a packet to the destination host by
knowing the destination IP address. In reality IP packets must eventually be delivered by
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‘1501007620 ‘150 100.76.21 |150 100.76.22 |150 100.76.23

ARP request (what is the MAC address of 150.100.76.2
T}M

?
ARP response (my MAC address is 08:00:5a:3b:94)
the underlying network technology, which uses its own addressing scheme. Currently,
Ethernet is the most common underlying network technology that IP runs on. Recall
that the Ethernet hardware can understand only its own 48-bit MAC address format.
Thus the source host must also know the destination MAC address if the packet is to
be delivered to the destination host successfully.

How does the host map the IP address to the MAC address? An elegant solution to
find the destination MAC address is to use the . Address Resolution Protocol (ARP).
_The main idea is illustrated in F1gure 8.9. Suppose H1 wants to send an IP packet to H3
“but does not know the MAC address of H3. H1 first broadcasts an ARP request packet
asking the destination host, which is identified by H3’s IP address, to reply. All hosts
in the network receive the packet, but only the intended host, which is H3, responds
to H1. The ARP response packet contains H3’s MAC and IP addresses. From now on
H1 knows how to send packets to H3. To avoid having to send an ARP request packet
each time HI wants to send a packet to H3, H1 caches H3’s IP and MAC addresses
in its ARP table so that H1 can simply look up H3’s MAC address in the table for
future use. Each entry in the ARP table is usually “aged” so that the contents are erased
if no activity occurs within a certain period, typically around 5 to 30 minutes) This
procedure allows changes in the host’s MAC address to be updated. The MAC address
may change, for example, when an Ethernet card is broken and is replaced with a
new one.

Figure 8.10 uses a sequence of POP3 messages to provide an example of an ARP
request from the source with MAC address 00:01:03:1d:cc:f7, which is manufactured -
by 3COM. The first frame in the top pane shows that the ARP request is for the
MAC address of the machine with IP address 192.168.2.18. The middle pane pro-
vides additional details for the first frame. It can be seen that that frame is an Ether-
net frame that has the destination address set for broadcast and the type field set to
ARP (0x0806). The ARP packet indicates that the hardware is Ethernet, that the mes-
sage is an ARP request, and that the target is a 4-byte IP address. This is followed by
the sender’s IP (192.168.2.18) and MAC address. The target IP address (192.168.2.1)
is shown and the target MAC address contains all zeros indicating that it is not known.
The second frame in the top pane contains the reply from the target machine indicating
that its MAC address is 00:04:¢2:29:b2:3a, which is manufactured by SMC.

H
5]
E]

FIGURE 8.9 Address Resolution Protocol.
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FIGURE 8.10 Example of an ARP request.

8.2.7 Reverse Address Resolution

In some situations a host may know its MAC address but not its IP address. For example,
when a diskless computer such as an X terminal is being bootstrapped, it can read the
MAC address from its Ethernet card. However, its IP address is usually kept separately
in a disk at the server. The problem of getting an IP address from a MAC address can
be handled by the Reverse Address Resolution Protocol (RARP), which works in a
fashion similar to ARP.

To obtain its IP address, the host first broadcasts an RARP request packet containing
its MAC address on the network. All hosts on the network receive the packet, but only
the server replies to the host by sending an RARP response packet containing the host’s
MAC and IP addresses. One limitation with RARP is that the server must be located
on the same physical network as the host.

8.2.8 Fragmentation and Reassembly

One of the strengths of IP is that it can work on a variety of physical networks. Each
physical network usually imposes a certain packet-size limitation on the packets that
can be carried, called the maximum transmission unit (MTU). For example, Ethernet
specifies an MTU of 1500 bytes, and FDDI specifies an MTU of 4464 bytes. When IP
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has to send a packet that is larger than the MTU of the physical network, IP must break
the packet into smaller fragments whose size can be no larger than the MTU. Each
fragment is sent independently to the destination as though it were an IP packet. If the
MTU of some other network downstream is found to be smaller than the fragment size,
the fragment will be broken again into smaller fragments, as shown in Figure 8.11.
The destination IP is the only entity that is responsible for reassembling the fragments
into the original packet. To reassemble the fragments, the destination waits until it has
received al! the fragments belonging to the same packet. If one or more fragments are lost
in the network, the destination abandons the reassembly process and discards the rest
of the fragments. To detect lost fragments, the destination host sets a timer once the
first fragment of a packet arrives. If the timer expires before all fragments have been
received, the host assumes the missing fragments were lost in the network and discards
the other fragments.

Three fields in the IP header (identification, flags, and fragment offset in Figure 8.4)
have been assigned to manage fragmentation and reassembly. At the destination IP has
to collect fragments for reassembling into packets. The identification field is used to
identify which packet a particular fragment belongs to so that fragments for different
packets do not get mixed up. To have a safe operation, the source host must not repeat
the identification value of the packet destined to the same host until a sufficiently long
period of time has passed.

The flags field has three bits: one unused bit. one “don’t fragment” (DF) bit, and one
“more fragment” (MF) bit. If the DF bit is set to 1, it forces the router not to fragment
the packet. If the packet length is greater than the MTU, the router will have to discard
the packet and send an error message to the source host. The MF bit tells the destination
host whether or not more fragments follow. If there are more. the MF bit is set to 1;
otherwise, it is set to 0. The fragment offset tield identifies the location of a fragment in
a packet. The value measures the offset, in units of eight bytes. between the beginning
of the packet to be fragmented and the beginning of the fragment, considering the data
part only. Thus the first fragment of a packet has an offsst value of 0. The data length
of each fragment, except the last one. must be a multiple of eight bytes. The reason
the offset is measured on units of eight bytes is thut the fragment offset field has only
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13 bits, giving a maximum count of 8192. To be able to cover all possible data lengths
up to the maximum of 65,536 bytes, it is sufficient to multiply 8192 by 8. The reader
should verify that these three fields give sufficient information to hosts and routers to
perform fragmentation and reassembly.

Although fragmentation may seem to be a good feature to implement, it involves
a subtle performance penalty. As alluded to earlier, if one of the fragments is lost, the
packet cannot be reassembled at the destination and the rest of the fragments have to
be discarded. This process, of course, wastes transmission bandwidth. If the higher-
layer protocol requires reliability, then all fragments for that packet would have to be
retransmitted. It is possible to save some bandwidth if routers discard fragments more
intelligently. Specifically, if a router has to discard a fragment, say, due to congestion,
it might as well discard the subsequent fragments belonging to the same packet, since
they will become useless at the destination. In fact, this same idea has been implemented
in ATM networks.

9. GV I4UDE Fragmenting a Packet

Suppose a packet arrives at a router and is to be forwarded to an X.25 network having
an MTU of 576 bytes. The packet has an IP header of 20 bytes and a data part of
1484 bytes. Perform fragmentation and include the pertinent values of the IP header of
the original packet and of each fragment. ’

The maximum possible data length per fragment = 576 — 20 = 556 bytes. How-
ever, 556 is not a multiple of 8. Thus we need to set the maximum data length to
552 bytes. We can break 1484 into 552 + 552 + 380 (other combinations are also
possible).

Table 8.1 shows the pertinent values for the IP header where x denotes a unique
identification value. Other values, except the header checksum, are the same as in the
original packet.

TABLE 8.1 Values of the IP header in a fragmented packet.

Total length D MF Fragment offset
Original packet 1504 x 0 0
Fragment 1 572 x 1 0
Fragment 2 572 x 1 69
Fragment 3 400 x 0 138

8.2.9 ICMP: Error and Control Messages

It was noted earlier that if a router could not forward a packet for some reason (for
example, the TTL value reaches 0, or the packet length is greater than the network
MTU while the DF bit is set), the router would send an error message back to the
source to report the problem. The Internet Control Message Protocol (ICMP) is the
protocol that handles error and other control messages. Although ICMP messages are
encapsulated by IP packets (with protocol number 1), ICMP is considered to be in
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Type Code Checksum

Unused

IP header and 64 bits of original datagram

FIGURE 8.12  ICMP basic error message format.

the same layer as [P. Each ICMP message format begins with a type field to identify the
message. Some ICMP message types are echo reply, destination unreachable, source
quench, redirect, echo request, time exceeded, parameter problem, timestamp request,
and timestamp reply. We describe several important types in this section (detailed
information can be found in [RFC 792)).

Basic error messages generally follow the format shown in Figure 8.12. The
description of each field follows.

Type: This field identifies the type of the message. Several types are described
below and more detailed information can be found in [RFC 792].

Code: For a given type, the code field describes the purpose of the message.

Checksum: This field is used to detect errors in the ICMP message.

IP header plus original datagram: This field can be used for diagnostic purposes
by matching the information (e.g., port numbers) in the ICMP message with the
original data in the IP packet.

For example, a rype 3 message (that is, with a type field value of 3) indicates a problem
reaching the destination. The particular problem is identified by one of the following
possible values for the code field:

0 Network Unreachable 3 Port Unreachable
1 Host Unreachable 4 Fragmentation needed and DF set
2 Protocol Unreachable 5 Source route failed

A type 11 message indicates a time-exceeded problem. A code field of 0 indicates
that the TTL value has been exceeded. A code field of 1 indicates that the fragment
reassembly time has been exceeded. The ICMP time-exceeded message is exploited in
the Traceroute program. When a packet reaches a router with the value of the TTL equal
to 0 or 1 before the packet reaches the destination, the corresponding router will send
an ICMP message with type “time exceeded” back to the originating host. The time-
exceeded message also contains the IP address of the router that issues the message.
Thus, by sending messages to the destination with the TTL incremented by one per
message, a source host will be able to trace the sequence of routers to the destination.

Echo request and echo reply messages follow the format shown in Figure 8.13.
When a destination receives an echo request message from a source, the destination
simply replies with a corresponding echo reply message back to the source. The echo
request and echo reply messages are used in the PING program and are often used
to determine whether a remcte host is alive. PING is also often used to estimate the
round-trip time between two hosts.
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0 8 16 31

Type Code Checksum

Identifier Sequence number

Data

FIGURE 8.13  Echo request and echo reply message format.

Type 8 is used for echo request while fype 0 for echo reply. The code field is set
to zero for both types. The sequence number field is used to match the echo reply
message with the corresponding echo request message. The identifier field can be used
to differentiate different sessions using the echo services. The data from the echo request
message is simply copied in the echo reply message and can be used for diagnostic
purposes. The data field is of variable length.

Figure 8.14 and Figure 8.15 show the use of ICMP packets to PING the host
tesla.comm.utoronto.ca. The top pane of Figure 8.14 shows that frame 4 contains the
first ICMP echo request packet. The middle pane shows the details of ICMP packet
fields. The type 8 indicates that this is an ICMP echo request. The identifier (0x0200)
and the sequence number (5b:00) are included to help identify the echo reply. The
middle pane in Figure 8.15 shows frame 5 contains the first ICMP echo reply packet
indicated by the type 0 and by identifier and sequence number fields that match the
first request. Receipt of the echo reply verifies that a valid path between the two hosts
€XIStS.
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8.3 IPvé6

IP version 4 has played a central role in the internetworking environment for many
years. It has proved flexible enough to work on many different networking technologies.
However, it has become a victim of its own success—explosive growth! In the early
days of the Internet, people using it were typically researchers and scientists working
in academia, high-tech companies, and research laboratories, mainly for the purpose
of exchanging scientific results through e-mails. In the 1990s the World Wide Web and
personal computers shifted the user of the Internet to the general public. This change has
created heavy demands for new IP addresses, and the 32 bits of the current IP addresses
will be exhausted sooner or later.

In the early 1990s the Internet Engineering Task Force (IETF) began to work on
the successor of IP version 4 that would solve the address exhaustion problem and
other scalability problems. After several proposals were investigated, a new IP version
was recommended in late 1994. The new version is called IPv6 for IP version 6 (also
called IP next generation or IPng) [RFC 2460]. IPv6 was designed to interoperate with
IPv4 since it would likely take many years to complete the transition from version 4
to version 6. Thus IPv6 should retain the most basic service provided by IPv4—a
connectionless delivery service. On the other hand, IPv6 should also change the IPv4
functions that do not work well and support new emerging applications such as real-time
video conferencing, etc. Some of the changes from IPv4 to IPv6 include:

Longer address fields: The length of address field is extended from 32 bits to
128 bits. The address structure also provides more levels of hierarchy. Theoret-
ically, the address space can support up to 3.4 x 10°® hosts.
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Simplified header format: The header format of IPv6 is simpler than that of IPv4.
Some of the header fields in [Pv4 such as checksum, IHL, identification, flags,
and fragment offset do not appear in the IPv6 header.

Flexible support for options: The options in IPv6 appear in optional extension
headers that are encoded in a more efficient and flexible fashion than they are
in [Pv4.

Flow label capability: IPv6 adds a “flow label” to identify a certain packet “flow”
that requires a certain QoS.

Security: IPv6 supports built-in authentication and confidentiality.

Large packets: IPv6 supports payloads that are longer than 64 K bytes, called
Jumbo payloads.

Fragmentation at source only: Routers do not perform packet fragmentation. If
a packet needs to be fragmented, the source should check the minimum MTU
along the path and perform the necessary fragmentation.

No checksum field: The checksum field has been removed to reduce packet pro-
cessing time in a router. Packets carried by the physical network such as Ether-
net, token ring, or X.25 are typically already checked. Furthermore, higher-layer
protocols such as TCP and UDP also perform their own verification. Thus the
removal of the checksum field is unlikely to introduce a serious problem in most
situations.

8.3.1 Header Format

The IPv6 header consists of a required basic header and optional extension headers. The
format of the basic header is shown in Figure 8.16. The packet should be transmitted
in network byte order.

Source address

" Destination address Gl

FIGURE 8.16 IPv6 basic header.
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The description of each field in the basic header follows.

Version: The version field specifies the version number of the protocol and should
be set to 6 for IPv6. The location and length of the version field stays unchanged
s0 that the protocol software can recognize the version of the packet quickly.

Traffic class: The traffic class field specifies the traffic class or priority of the
packet. The traffic class field is intended to support differentiated service.

Flow label: The flow label field can be used to identify the QoS requested by the
packet. In the IPv6 standard. a flow is defined as “"a sequence of packets sent from
a particular source to a particular (unicast or multicast) destination for which
the source desires special handling by the intervening routers.” An example of
an application that may use a flow label is a packet video system that requires
its packets to be delivered to the destination within a certain time constraint.
Routers that see these packets will have to process them according to their QoS.
Hosts that do not support flows are required to set this field to 0.

Payload length: The payload length indicates the length of the data (excluding
header). With 16 bits allocated to this field, the payload length is limited to
65,535 bytes. As we explain below, it is possible to send larger payloads by
using the option in the extension header.

Next header: The next header field identifies the type of the extension header that
follows the basic header. The extension header is similar to the options field in
[Pv4 but is more flexible and efficient. Extension headers are further discussed
below.

Hop limit: The hop limit field replaces the TTL field in IPv4. The name now says
what it means: The value specifies the number of hops the packet can travel
before being dropped by a router.

Source address and destination address: The source address and the destina-
tion address identify the source host and the destination host, respectively. The
address format is discussed below.

Figure 8.17 gives an example of IPv6 packet exchanges. A comparison with Fig-
ure 8.5 shows that IPv6 has a simpler header structure. The middle pane zooms in on
frame number 7, which carries an IPv6 packet that in turn carries a DNS query. The
version field indicates the IPv6 is involved, that the payload length is 39 bytes, and that
the next header is a UDP header.

8.3.2 Network Addressing

The IPv6 address is 128 bits long, which increases the overhead somewhat. However, it
is almost certain that the huge address space will be sufficient for many years to come.
The huge address space also gives more flexibility in terms of address allocation. IPv6
addresses are divided into three categories:

1. Unicast addresses identify a single network interface.
2. Multicast addresses identify a group of network interfaces. typically at different
locations. A packet will be sent to all network interfaces in the group.
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FIGURE 8.17  Example of an IPv6 packet header.

3. Anycast addresses also identify a group of network interfaces. However, a packet
will be sent to only one network interface in the group, usually the nearest one.

Note that a broadcast address can be supported with a multicast address by making
the group consist of all interfaces in the network.

Recall that the IPv4 address typically uses the dotted-decimal notation when com-
municated by people. It should become obvious that the dotted-decimal notation can
be rather long when applied to [Pv6 long addresses. A more compact notation that is
specified in the standard is to use a hexadecimal digit for every 4 bits and to separate
every 16 bits with a colon. An example of an IPv6 address is

4BF5:AA12:0216:FEBC:BASF:039A:BE9A:2176

Often IPv6 addresses can be shortened to a more compact form. The first shorthand
notation can be exploited when the 16-bit field has some leading zeros. In this case the
leading zeros can be removed, but there must be at least one numeral in the field. As

an example
4BF5:0000:0000:0000:BA5F:039A:000A:2176
can be shortened to

4BF5:0:0:0:BA5F:39A:A:2176
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Further shortening is possible where consecutive zero-valued fields appear. These
fields can be shortened with the double-colon notation (:2). Of course, the double-colon
notation can appear only once in an address, since the number of zero-valued fields is not
encoded and needs to be deduced from the specified total number of fields. Continuing
with the preceding example. the address can be written even more compactly as

4BF5::BASF:39A:A:2176

To recover the original address from one containing a double colon, you take the
nonzero values that appear to the left of the double colons and align them to the left.
You then take the number that appears to the right of the double colons and align them
to the right. The field in between is set to Os.

The dotted-decimal notation of IPv4 can be mixed with the new hexadecimal
notation. This approach is useful for the transition period when IPv4 and IPv6 coexist.
An example of a mixed notation is

::FFFF:128.155.12.198

Address allocations are organized by types, which are in turn classified according
to prefixes (leading bits of the address). At the time of this writing, the initial allocation
for prefixes is given in Table 8.2.

Less than 30 percent of the address space has been assigned. The remaining portion
of the address space is for future use. Most types are assigned for unicast addresses,
except the one with a leading byte of 1s, which is assigned for multicast. Anycast
addresses are not differentiated from unicast and share the same address space.

TABLE 8.2 Address types based on prefixes.

Binary prefix Types Percentage of address space
0000 0000 Reserved 0.39
0000 0001 Unassigned 0.39
0000 001 ISO network addresses 0.78
0000 010 IPX network addresses 0.78
0000 011 Unassigned 0.78
0000 1 Unassigned 312
0001 Unassigned 6.25
001 Unassigned 12.5
010 Provider-based unicast addresses 12.5
011 Unassigned 12.5
100 Geographic-based unicast addresses 12.5
101 Unassigned 12.5
110 Unassigned 12.5
1110 Unassigned 6.25
11110 Unassigned 3.12
1111 10 Unassigned 1.56
1111110 Unassigned 0.78
111111100 Unassigned 0.2
11111110 10 Link local use addresses 0.098
1111111011 Site local use addresses 0.098

1111 1111 Multicast addresses 0.39
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n bits m bits o bits p bits (125-m-n-o-p) bits

010 Registry ID Provider ID Subscriber ID Subnet ID Interface ID

FIGURE 8.18 Provider-based address format.

IPv6 assigns a few addresses for special purposes. The address 0::0 is called the
unspecified address and is never used as a destination address. However. it may be used
as a source address when the source station wants to learn its own address. The address
::1 is used for a loopback whose purpose is the same as the loopback address in IPv4.
Another set of special addresses is needed during the transition period where an IPv6
packet needs to be “tunneled” across an IPv4 network. These addresses, called /Pv4-
compatible addresses, are used by IPv6 routers and hosts that are directly connected
to an IPv4 network. The address format consists of 96 bits of Os followed by 32 bits
of IPv4 address. Thus an IPv4 address of 135.150.10.247 can be converted to an IPv4-
compatible IPv6 address of ::135.150.10.247. A similar set of special addresses is
used to indicate IPv4 hosts and routers that do not support [Pv6. These addresses are
called IP-mapped addresses. The format of these addresses consists of 80 bits of Os,
followed by 16 bits of 1s, and then by 32 bits of 1Pv4 address.

Provider-based unicast addresses are identified by the prefix 010. It appears that
these addresses will be mainly used by the Internet service providers to assign addresses
to their subscribers. The format of these addresses is shown in Figure 8.18.

Notice the hierarchical structure of this address format. The first level is identified
by the registry ID, which is managed by ARIN (North America), RIPE (Europe),
or APNIC (Asia Pacific). The next level identifies the Internet service provider that
is responsible for assigning the subscriber IDs. Finally, each subscriber assigns the
addresses according to the subnet IDs and interface IDs.

The local addresses are used for a collection of hosts that do not want to connect
to the global Internet because of security and privacy concerns. There are two types of
local addresses: link-local addresses and site-local addresses. The link-local addresses
are used for a single link, while the site-local addresses are used for a single site. The
local addresses are designed so that when an organization decides to connect the hosts
to the global Internet, the move will be as painless as possible.

8.3.3 Extension Headers

To support extra functionalities that are not provided by the basic header, IPv6 allows
an arbitrary number of extension headers to be placed between the basic header and the
payload. Extension headers act like options in IPv4 except the former are encoded more
efficiently and flexibly, as we show soon. The extension headers are daisy chained by
the next header field, which appears in the basic header as well as in each extension
header. Figure 8.19 illustrates the use of the next header field. A consequence of the
daisy-chain formation is that the extension headers must be processed in the order in
which they appear in the packet.
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FIGURE 8.19  Daisy-chain extension headers.

Six extension headers have been defined. They are listed in Table 8.3. These
extension headers should appear in a packet as they are listed in the table from top
to bottom.*

LARGE PACKET

IPv6 allows a payload size of more than 64K by using an extension header. The use
of payload size greater than 64K has been promoted mainly by people who work on
supercomputers. Figure 8.20 shows the format of the extension header for a packet
with a jumbo payload (length that is greater than 65,535 bytes). The next header field
identifies the type of header immediately following this header. The value 194 defines
a jumbo payload option. The payload length in the basic header must be set to 0. The
option length field (opt len) specifies the size of the jumbo payload length field in
bytes. Finally, the jumbo payload length field specifies the payload size. With 32 bits
the payload size can be as long as 4,294,967,295 bytes.

FRAGMENTATION

As noted previously, IPv6 allows only the source host to perform fragmentation.
Intermediate routers no longer need to perform fragmentation. If the packet length
is greater than the MTU of the network this packet is to be forwarded to, an intermedi-
ate router discards the packet and sends an ICMP error message back to the source. A
source can find the minimum MTU along the path from the source to the destination
by performing a “path MTU discovery” procedure. An advantage of doing fragmen-
tation at the source only is that routers can process packets faster, which is important
in a high-speed environment. A disadvantage is that the path between a source and a

o~ TABLE 8.3 Extension headers.

\

P A L T S 5 TSR AR R BN T I et Bl SN AR RS R e PTGk
Header code Header type
0 Hop-by-hop options header
: 43 Routing header
44 Fragment header
51 Authentication header
~ 52 Encapsulating security payload header
60 Destination options header

3The authentication header and the encapsulating security payload header are discussed in Chapter 11.
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FIGURE 8.20  Extension header for jumbo packet.

destination must remain reasonably static so that the path MTU discovery does not give
outdated information. If a source wants to fragment a packet, the source will include a
fragment extension header (shown in Figure 8.21) for each fragment of the packet.

The fragment offset. M (more tragment), and identification fields have the same
purposes as they have in IPv4 except the identification is now extended to 32 bits. Bits 8
to 15 and bits 29 and 30 are reserved for future use.

SOURCE ROUTING

Like IPv4. IPv6 allows the source host to specify the sequence of routers to be visited by
a packet to reach the destination. This option is defined by a routing extension header,
which is shown in Figure 8.22. The header length specifies the length of the routing
extension header in units of 64 bits, not including the first 64 bits. Currently, only type
0 is specified. The segment left field identifies the number of route segments remaining
before the destination is reached. Maximum legal value is 23. Initially, this value will
be set to the total number of route segments from the source to the destination. Each
router decrements this value by 1 until the packet reaches the destination. Each bitin the
strict/loose bit mask indicates whether the next destination address must be followed
strictly (if the bit is set to 1) or loosely (if the bit is set to 0).

8.3.4 Migration Issues from 1Pv4 to IPv6

Recall from Chapter | that the capability of a particular technology eventually saturates
due to some fundamental limit. A new technology typically replaces an old one by
providing new capabilities at the next level. We see that the addressing capabilities of
1Pv4 are reaching the saturation limit. [Pv6 was developed to improve the addressing
capabilities so that new devices requiring global addresses can be supported in the
future. However. because IPv4 networks and hosts are widely deployed, migration
issues need to be solved to ensure that the transition from IPv4 to IPv6 is as smooth as
possible.

Current solutions are mainly based on the dual-IP-layer (or dual stack) approach
whereby both IPv4 and IPv6 functions are present. For example, routers independently

0 8 : 16 29 31

Next header Reserved Fragment offset Res |M

Identification

FIGURE 8.21 Fragment extension header.
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Next header Header length Routing type = 0 Segment left
Reserved Strict/loose bit mask
Address 1
Address 2
Address n

FIGURE 8.22 Routing extension header.

run both IPv4 and IPv6 routing protocols and can forward both types of packets. Recall
that the type of a packet can be identified from the version field so that each incoming
packet can be sent to the appropriate processing module.

When islands of IPv6 networks are separated by IPv4 networks, one approach is
to build a tunnel across an IPv4 network connecting two IPv6 networks, as shown in
Figure 8.23a. A tunnel is a path created between two nodes so that the tunnel appears as
a single link to the user, as shown in Figure 8.23b. The tunneling approach essentially
hides the route taken by the tunnel from the user. In our particular example, an IPv4
tunnel allows IPv6 packets to be forwarded across an IPv4 network without the IPv6
user having to worry about how packets are actually forwarded in the IPv4 network. A

(a) Source Tunnel head-end Tunnel tail-end Destination

IPv6 network IPv4 network IPv6 network

IPv6 header IPv4 header
(b) Source Destination
@ N @
IPv6 network IPv6 network

FIGURE 8.23  Tunncling: (a) IPv6 over IPv4 tunnel: (b) IPV6 virtual
topology.
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tunnel is typically realized by encapsulating each user packet in another packet that can
be forwarded along the tunnel. In our example, IPv6 packets are first forwarded from the
source to the tunnel head-end in the IPv6 network. At the tunnel head-end packets are
encapsulated into IPv4 packets. Then IPv4 packets are forwarded in the IPv4 network to
the tunnel tail-end where the reverse process (i.e., decapsulation) is performed. Finally,
IPv6 packets are forwarded from the tunnel tail-end to the destination. Note that the
tunnel endpoint can be located at a source host, an intermediate router, or a destination
host. Note also that the concept of tunneling can be made recursive so that a tunnel may
provide forwarding service to another tunnel.

8.4 USER DATAGRAM PROTOCOL

Two transport layer protocols, TCP and UDP, build on the best-effort service provided
by IP to support a wide range of applications. In this section we discuss the details
of UDP.

The User Datagram Protocol (UDP) is an unreliable, connectionless transport
layer protocol. It is a very simple protocol that provides only two additional services
beyond IP: demultiplexing and error checking on data. Recall that IP knows how to de-
liver packets to a host, but does not know how to deliver them to the specific application
in the host. UDP adds a mechanism that distinguishes among multiple applications in
the host. Recall also that IP checks only the integrity of its header. UDP can optionally
check the integrity of the entire UDP datagram. Applications that do not require zero
packet loss such as in packet voice systems are well suited to UDP. In practice, applica-
tions that use UDP include Trivial File Transfer Protocol, DNS, SNMP, and Real-Time
Protocol (RTP).

The format of the UDP datagram is shown in Figure 8.24. The destination port
allows the UDP module to demultiplex datagrams to the correct application in a given
host. The source port identifies the particular application in the source host to receive
replies. The UDP length field indicates the number of bytes in the UDP datagram
(including header and data).

The UDP checksum field detects errors in the datagram, and its use is optional. If a
source host does not want to compute the checksum, the checksum field should contain
all Os so that the destination host knows that the checksum has not been computed.
What if the source host does compute the checksum and finds that the result is 0? The

0 16 31

UDP length ' s UDP checksum
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Data

FIGURE 8.24 UDP datagram.
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FIGURE 8.25  UDP pseudoheader.

algorithm that a host uses to compute the checksum will give a checksum field of all 1s.
This is another representation of zero in 1s complement. The checksum computation
procedure is similar to that in computing TP checksum except for two new twists.
First, if the length of the datagram is not a multiple of 16 bits, the datagram will
be padded out with Os to make it a multiple of 16 bits. In doing so, the actual UDP
datagram is not modified. The pad is used only in the checksum computation and is not
transmitted. Second, UDP adds a pseudoheader (shown in Figure 8.25) to the beginning
of the datagram when performing the checksum computation. The pseudoheader is also
created by the source and destination hosts only during the checksum computation and
is not transmitted. The pseudoheader is to ensure that the datagram has indeed reached
the correct destination host and port. Finally, if a datagram is found to be corrupted, it
is simply discarded and the source UDP entity is not notified.

8.5 TRANSMISSION CONTROL PROTOCOL

TCP [RFC 793] and IP are the workhorses of the Internet. The Transmission Control
Protocol (TCP) provides a logical full-duplex (two-way) connection between two ap-
plication layer processes across the Internet. TCP provides these application processes
with a connection-oriented, reliable, in-sequence, byte-stream service. TCP also pro-
vides flow control that allows a TCP receiver to control the rate at which the sender
transmits information so that the receiver buffers do not overflow. In addition, TCP also
provides congestion control that induces senders to reduce the rate at which they send
packets when there is congestion in the routers. TCP can support multiple application
processes in the same end system.

In Chapter 2 we discussed the role of TCP in supporting application layer protocols.
In Section 5.3 we showed how TCP provides reliable byte stream service using a form
of Selective Repeat ARQ. In this section we first summarize the basic operation of
TCP and the reliable byte stream service it provides. We then discuss the format of the
TCP segment and the establishment and termination of TCP connections. We discuss
the data transfer phase of a TCP connection, including flow control. F inally we consider
how TCP implements congestion control.

8.5.1 TCP Operation and Reliable Stream Service

A TCP connection goes through the three phases of a connection-oriented service. The
TCP connection establishment phase sets up a connection between the two application
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processes by creating and initializing variables that are used in the protocol. These
variables are stored in a connection record that is called the transmission control block
(TCB). Once the connection is established, TCP enters the data transfer phase where it
delivers data over each direction in the connection correctly and in sequence. TCP was
designed to operate over IP and does not assume that the underlying network service is
reliable. To implement reliability, TCP uses a form of Selective Repeat ARQ. When the
applications are done exchanging data, TCP enters the connection termination phase
where each direction of the connection is terminated independently, allowing data to
continue flowing in one direction after the other direction has been closed.

As indicated in Chapter 2, a TCP connection is uniquely identified by four param-
eters: the sender IP address and port number, and the destination IP address and port
number. An end system can therefore support multiple simultaneous TCP connections.
Typically the server is assigned a well-known port number and the client is assigned
an ephemeral port number that is selected from a pool of available numbers when the
connection is set up.

As shown in Figure 8.26, the application layer writes the data it needs to transmit
into a buffer. TCP does not preserve message boundaries and treats the data it gets from
the application layer as a byte stream. Thus when a source writes a 1000-byte message
in a single chunk (one write), the destination may receive the message in two chunks
of 500 bytes each (two reads), in three chunks of 400 bytes, 300 bytes and 300 bytes,
or in any other combination. In other words, TCP may split or combine the application
information and pack it into segments in the way it finds most appropriate for transfer
over the underlying network.

The TCP transmitter arranges a consecutive string of bytes into a segment. The
segment contains a header with address information that enables the network to direct
the segment to its destination application process. The segment contains a sequence
number that corresponds to the number of the first byte in the string that is being trans-
mitted. The segment also contains an Internet checksum. The TCP receiver performs
an error check on each segment it receives. If the segment is error-free and is not a
duplicate segment, the receiver inserts the bytes into the appropriate locations in the
receive buffer if the bytes fall within the receive window. The receiver will accept out-
of-order but error-free segments, so the receive buffer can have gaps where bytes have
not been received. The receiver keeps track of the oldest byte it has not yet received.
It sends the sequence number of this byte in the acknowledgments it sends back to the
transmitter. The receive window slides forward whenever the desired next oldest byte
is received. The TCP transmitter uses a time-out mechanism to trigger retransmissions

Application Application FIGURE 8.26 TCP preview.
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when a segment is not acknowledged within a certain time. The TCP transmitter send
window slides forward whenever the acknowledgments for pending bytes are received.

TCP was designed to deliver a connection-oriented service in the Internet environ-
ment, where different IP packets may traverse a different path from the same source
to the same destination and may therefore arrive out of order. Therefore, it is possible
for old segments from previous connections to arrive at a receiver, thus potentially
complicating the task of eliminating duplicate segments. TCP deals with this problem
by using long sequence numbers (32 bits) and by establishing randomly selected initial
sequence numbers during connection setup. At any given time the receiver is accepting
sequence numbers (bytes) from a much smaller window, so the likelihood of accepting
a very old message is very low. In addition, TCP enforces a time-out period at the end
of each connection to allow the network to clear old segments from the network.

TCP separates the flow control function from the acknowledgment function. The
flow control function is implemented through an advertised window field in the segment
header. Segments that travel in the reverse direction contain the advertised window size
that informs the transmitter of the number of bytes that can be currently accommodated
in the receiver buffers.

MAXIMUM SEGMENT LIFETIME, REINCARNATION,
AND THE Y2K BUG

The Y2K bug is the result of an ambiguity that arises from the limited precision
used in early computer programs to specify the calendar year. The use of-only two
decimal digits to represent a year results in an ambiguity between the year 1900 and
the year 2000. Consequently, there were many concerns about unanticipated actions
that might have been taken by these programs when the year 2000 was reached. This
same problem is faced by millions of TCP processes every second of every day.

A TCP connection is identified by the source and destination port numbers and
by the IP address of the source and destination machines. During its lifetime, the
TCP connection will send some number of segments using the 32-bit byte sequence
numbering. Each segment is encapsulated in an IP packet and sent into the Internet.
It is possible for an IP packet to get trapped in a loop inside the network, typically
while the routing tables adapt to a link or router failure. Such a packet is called a
lost or wandering duplicate. In the meantime TCP at the sending side times out and
sends a retransmission of the segment that arrives promptly using the new route.
If the wandering duplicate subsequently arrives at the same connection, then the
segment will be recognized as a duplicate and be rejected. (This scenario assumes
that segments are not being sent so fast that the sequence numbers have not already
wrapped around.)

It is also possible for the TCP connection to end, even while one of its wan-
dering duplicates is still in the network. Suppose that a new TCP connection is
set up between the same two machines and with the same port numbers. The new
TCP connection is called an incarnation of the previous connection. TCP needs
to protect the new connection so that duplicates from previous connections are
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prevented from being accepted and interpreted by the new connection. For example,
the duplicate could be the command to terminate a connection. To deal with these
and other problems, we show in the next section that every implementation of TCP
assumes a certain value for the maximum segment lifetime (MSL), which is the
maximum time that an IP packet can live in the network.

8.5.2 TCP Protocol

We now discuss the structure of TCP segments and the setting up of a TCP connection,
the data transfer phase, and the closing of the connection. Detailed information about
TCP can be found in RFC 793 and RFC 1122.

TCP SEGMENT

Figure 8.27 shows the format of the TCP segment. The header consists of a 20-byte
fixed part plus a variable-size options field.

The description of each field in the TCP segment is given below. The term sender
refers to the host that sends the segment, and receiver refers to the hosi that receives
the segment.

Source port and destination port: The source and destination ports identify the
sending and receiving applications, respectively. Recall from Section 2.3.2 that
the pair of ports and IP addresses identify a process-to-process connection.

Sequence number: The 32-bit sequence number field identifies the position of the
first data byte of this segment in the sender’s byte stream during data transfer
(when SYN bit is not set). The sequence number wraps back to O after 232 _ 1,
Note that TCP identifies the sequence number for each byte (rather than for each
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FIGURE 8.27 TCP segment.
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segment). For example, if the value of the sequence number is 100 and the data
area contains five bytes, then the next time this TCP module sends a segment, the
sequence number will be 105. If the SYN bit is set to 1 (during connection estab-
lishment), the sequence number indicates the initial sequence number (ISN)
to be used in the sender’s byte stream. The sequence number of the first byte
of data for this byte stream will be ISN + 1. It is important to note that a TCP
connection is full duplex so that each end point independently maintains its own
sequence number.

Acknowledgment number: This field identifies the sequence number of the next
data byte that the sender expects to receive if the ACK bit is set. This field also
indicates that the sender has successfully received all data up to but not including
this value. If the ACK bit is not set (during connection establishment), this field
is meaningless. Once a connection is established, the ACK bit must be set.

Header length: This field specifies the length of the TCP header in 32-bit words.
This information allows the receiver to know the beginning of the data area
because the options field is variable length.

Reserved: As the name implies, this field is reserved for future use and must be
set to 0.

URG: If this bit is set, the urgent pointer is valid (discussed shortly).

ACK: If this bit is set, the acknowledgment number is valid.

PSH: When this bit is set, it tells the receiving TCP module to pass the data to the
application immediately. Otherwise, the receiving TCP module may choose to
buffer the segment until enough data accumulates in its buffer.

RST: When this bit is set, it tells the receiving TCP module to abort the connection
because of some abnormal condition.

SYN: This bit requests a connection (discussed later).

FIN: When this bit is set, it tells the receiver that the sender does not have any
more data to send. The sender can still receive data from the other direction until
it receives a segment with the FIN bit set.

Window size: The window size field specifies the number of bytes the sender is
willing to accept. This field can be used to control the flow of data and congestion.

Checksum: This field detects errors on the TCP segment. The procedure is dis-
cussed below.

Urgent pointer: When the URG bit is set, the value in the urgent pointer field
added to that in the sequence number field points to the last byte of the “urgent
data” (data that needs immediate delivery). However, the first byte of the urgent
data is never explicitly defined. Because the receiver’s TCP module passes data
to the application in sequence. any data in the receiver’s buffer up to the last byte
of the urgent data may be considered urgent.

Options: The options field may be used to provide other functions that are not
covered by the header. If the length of the options field is not a multiple of
32 bits, extra padding bits will be added. The most important option is used by
the sender to indicate the maximum segment size (MSS) it can accept. This
option is specified during connection setup. Two other options that are negotiated
during connection setup are intended to deal with situations that involve large
delay-bandwidth products. The window scale option allows the use of a larger



8.5 Transmission Control Protocol 607

0 8 16 31

Source IP address

Destination [P address

00000000 Protogol = 6 TCP segment length

FIGURE 8.28 TCP pseudoheader.

advertised window size. The window can be scaled upward by a factor of up to
214, Normally the maximum window size is 2'® — 1 = 65,535. With scaling the
maximum advertised window size is 65,535 x 2! = 1,073,725,440 bytes. The
timestamp option is intended for high-speed connections where the sequence
numbers may wrap around during the lifetime of the connection. The timestamp
option allows the sender to include a timestamp in every segment. This timestamp
can also be used in the RTT calculation.

TCP CHECKSUM

The purpose of the TCP checksum field is to detect errors. The checksum computation
procedure is similar to that used to compute an IP checksum except for two features.
First, if the length of the segment is not a multiple of 16 bits, the segment will be padded
with zeros to make it a multiple of 16 bits. In doing so, the TCP length field is not
modified. Second, a pseudoheader (shown in Figure 8.28) is added to the beginning
of the segment when performing the checksum computation. The pseudoheader is
created by the source and destination hosts during the checksum computation and
is not transmitted. This mechanism ensures the receiver that the segment has indeed
reached the correct destination host and port and that the protocol type is TCP (which
is assigned the value 6). At the receiver the IP address information in the IP packet that
contained the segment is used in the checksum calculation.

CONNECTION ESTABLISHMENT

Before any host can send data. a connection must be established. TCP establishes
the connection using a three-way handshake procedure shown in Figure 8.29. The
handshakes are described in the following steps:

1. Host A sends a connection request to host B by setting the SYN bit. Host A also
registers its initial sequence number to use (Seq-no = x).

2. Host B acknowledges the request by setting the ACK bit and indicating the next data
byte to receive (Ack-no = x + 1). The “plus one” is needed because the SYN bit
consumes one sequence number. At the same time, host B also sends a request by

_ setting the SYN bit and registering its initial sequence number to use (Seq-no = y).

3. Host A acknowledges the request from B by setting the ACK bit and confirming the
next data byte to receive (Ack_no = y + 1). Note that the sequence number is set to

x + 1. On receipt at B the connection is established.
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FIGURE 8.29 Three-way handshake.

If during a connection establishment phase, one of the hosts decides to refuse a con-
nection request, it will send a reset segment by setting the RST bit. Each SYN message
can specify options such as maximum segment size, window scaling, and timestamps.

Because TCP segments can be delayed, lost, and duplicated, the initial sequence
number should be different each time a host requests a connection.® The three-way
handshake procedure ensures that both endpoints agree on their initial sequence num-
bers. To see why the initial sequence number must be different, consider a case in
which a host can always use the same initial sequence number, say, 7, as shown in
Figure 8.30. After a connection is established, a delayed segment from the previous
connection arrives. Host B accepts this segment, since the sequence number turns out
to be legal. If a segment from the current connection arrives later, it will be rejected
by host B, thinking that the segment is a duplicate. Thus host B cannot distinguish a
delayed segment from the new one. The result can be devastating if the delayed segment
says, for example, “Transfer 1 million dollars from my account.” You should verify that
if the initial sequence number is always unique, the delayed segment is very unlikely
to possess a legal sequence number and thus can be detected and discarded.

An example of the segments exchanged to carry out the TCP three-way handshake
was already presented in Chapter 5. Figure 8.31 shows the details of the second TCP seg-
ment in the three-way handshake. This segment has the ACK set to acknowledge the
receipt of the first SYN segment as well as the ACK sequence number 1839733356.
The segment also has SYN set to request the connection in the opposite direction with
initial sequence number 1877388864. Finally, the segment indicates a window size of
49152 bytes and it indicates that its maximum segment size is 1460 bytes as well.

®The specification recommends incrementing the initial sequence number by 1 every four microseconds.
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FIGURE 8.30 Justifying a three-way handshake: If a host
always uses the same initial sequence number. old segments
cannot be distinguished from the current ones.
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FIGURE 8.31 Example of TCP segment.
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EXAiVIPLE A Client/Server Application

Letus revisit the connection establishment process depicted in Figure 8.29 in the context
of a client/server application that uses TCP service. Let the client reside in host A and
the server in host B. Figure 8.32 shows that the server must first carry out a passive
open to indicate to TCP that it is willing to accept connections. When using Berkeley
sockets, a passive open is performed by the calls socket, bind, listen, and accept.
Recall from Chapter 2 that the server must use its well-known port number so that the
client knows how to contact the server. When a client wishes to initiate a session, it
performs an active open. This step involves making a socket call (#;) that creates the
socket on the client side and then a connect call (#,) that initiates the TCP connection.
This action causes the client’s TCP module to initiate the three-way handshake shown
in Figure 8.29. When the server’s TCP receives the first SYN, it returns a segment
with an ACK and its own SYN. When the client’s TCP receives this segment, connect
returns (#3) and the client’s TCP sends an ACK. Upon receiving this ACK, accept
returns () in the server, and the server is ready to read data. The client then issues a
write call (#5) to send a request message. Upon receipt of this segment by the TCP
module in the server, read returns (f), and the request message is passed to the server.
Subsequently, the server sends a reply message.

Host A (client) Host B (server)
socket
socket ) klnl-;lgen
connect (blocks) t SYN, Seq_no = x accept (blocks)

connect returns 13

write ' .
read (blocks) > accept returns

read (blocks)

ts read returns

write
read (blocks)

read returns

FIGURE 8.32  Client/server application process actions and TCP.
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DATA TRANSFER

To provide a reliable delivery service to applications, TCP uses the Selective Repeat
ARQ protocol with positive acknowledgment implemented by a sliding-window mech-
anism. The difference here is that the window slides on a byte basis instead of on a
packet basis. TCP can also apply flow control over a connection by dynamically ad-
vertising the window size. Flow control is the process of regulating the traffic between
two points and is used to prevent the sender from overwhelming the receiver with too
much data.

Figure 8.33 illustrates an example of how a TCP entity can exert flow control.
Suppose that at time #y, the TCP module in host B advertised a window of size 2048 and
expected the next byte received to have a sequence number 2000. The advertised window
allows host A to transmit up to 2048 bytes of unacknowledged data. At time f;, host A
has only 1024 bytes to transmit, so it transmits all the data starting with the sequence
number 2000. The TCP entity also advertises a window of size 1024 bytes to host B, and
the next byte is expected to have a sequence number of 1. When the segment arrives,
host B chooses to delay the acknowledgment in the hope that the acknowledgment can
ride freely with the data. Meanwhile at time f,, A has another 1024 bytes of data and
transmits it. After the transmission, A’s sending window closes completely. It is not
allowed to transmit any more data until an acknowledgment comes back.

At time 13, host B has 128 bytes of data to transmit; it also wants to acknowledge the
first two segments of data from host A. Host B can simply piggyback the acknowledg-
ment (by specifying the acknowledgment number to be 4048) to the data segment. Also

Host A Host B

FIGURE 8.33 TCP window flow control.
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at this time, host B finds out that it can allocate only 512 bytes of receive buffer space
for this connection because other connections are also competing for the precious mem-
ory. So it shrinks the advertised window from 2048 bytes to 512 bytes. When host A
receives the segment, the host changes its sending window to 512 bytes. If at time ¢4,
host A has 2048 bytes of data to transmit then it will transmit only 512 bytes. We see
that window advertisement dynamically controls the flow of data from the sender to
the receiver and prevents the receiver’s buffer from being overrun.

The previous discussion shows how TCP can delay transmission so that the ac-
knowledgments can be piggybacked to the data segment. Another use of delayed trans-
mission is to reduce bandwidth waste| Consider a login session in which a user types
one character at a time. When a character arrives from the application, the TCP module
sends the segment with one byte of data to the other end. The other end (login server)
needs to send an acknowledgment and then an echo character back to the client. Finally,
the client needs to send an acknowledgment of the echo character. Thus one character
generates four exchanges of IP packets between the client and the server with the fol-
lowing lengths: 41 bytes, 40 bytes, 41 bytes, and 40 bytes (assuming IP and TCP header
are 20 bytes each). In the WAN environment, this waste of bandwidth is usually not
justified.

A solution to reduce the waste was proposed by Nagle and is called the Nagle
algorithm. The idea works as follows. When an interactive application wants to send a
character, the TCP module transmits the data and waits for the acknowledgment from
the receiver. In the meantime, if the application generates more characters before the
acknowledgment arrives. TCP will not transmit the characters but buffer them instead.
When the acknowledgment eventually arrives, TCP transmits all the characters that
have been waiting in the buffer in a single segment.)

In the LAN environment where delay is rclative‘l)y small and bandwidth is plentiful,
the acknowledgment usually comes back before another character arrives from the
application. Thus the Nagle algorithm is essentially disabled. In the WAN environment
where acknowledgments can be delayed unpredictably, the algorithm is self-adjusting.
When delay is small, implying that the network is lightly loaded, only a few characters
are buffered before an acknowledgment arrives. In this case TCP has the luxury of
transmitting short segments. However, when delay is high, indicating that the network
is congested, many more characters will be buffered. Here, TCP has to transmit longer
segments and less frequently. In some cases the Nagle algorithm needs to be disabled
to ensure the interactivity of an application even at the cost of transmission efficiency.

Another problem that wastes network bandwidth occurs when the sender has a
large volume of data to transmit and the receiver can only deplete its receive buffer a
few bytes at a time. Sooner or later the receive buffer becomes full. When the receiving
application reads a few bytes from the receive buffer, the receiving TCP sends a small
advertisement window to the sender, which quickly transmits a small segment and fills
the receive buffer again. This process goes on and on with many small segments being
transmitted by the sender for a single application message. This problem is called the
silly window syndrome. It can be avoided by having the receiver not advertise the
window until the window size is at least as large as half of the receive buffer size, or
the maximum segment size. The sender side can cooperate by refraining from trans-
mitting small segments.



